DEXTER WILSON ENGINEERING, INC.

WATER • WASTEWATER • RECYCLED WATER

CONSULTING ENGINEERS

WATER STUDY FOR THE HOPE APARTMENTS PROJECT IN THE CITY OF CARLSBAD

December 15, 2022

2234 FARADAY AVENUE • CARLSBAD, CA • (760) 438-4422

WATER STUDY FOR THE HOPE APARTMENTS PROJECT IN THE CITY OF CARLSBAD

December 15, 2022

Prepared by:

Dexter Wilson Engineering, Inc. 2234 Faraday Avenue Carlsbad, CA 92008 760-438-4422

Job No. 1040-003

DEXTER S. WILSON, P.E. ANDREW M. OVEN, P.E. NATALIE J. FRASCHETTI, P.E. STEVEN J. HENDERSON, P.E. FERNANDO FREGOSO, P.E. KATHLEEN L. HEITT, P.E.

December 15, 2022

1040-003

Carlsbad Village II, LLC C/O Werner Properties 5120 Shoreham Place #160 San Diego, CA 92122

Attention: Patrick Zabrocki, Project Manager

Subject: Water Study for the Hope Apartment Project in the City of Carlsbad

Introduction

The Hope Apartments project is located in the western portion of the City of Carlsbad. The project is located on the southeast corner of the intersection of Grand Avenue and Hope Avenue. A vicinity map for the project is presented on Figure 1.

Project Description

The existing site where the Hope Apartments is proposed encompasses a gross area of approximately 3 acres. The Hope Apartments project involves redevelopment of the project area with 156 residential dwelling units. There is an existing building in the southwest corner of the site that is proposed to remain. It receives water service from a separate existing water meter also proposed to remain.

Purpose of Study

The purpose of this study is to analyze the existing and proposed public water system's capacity of serve the project. This report will provide recommendations for any immediate improvements to the existing public water system determined to be necessary to serve the Hope Apartment project. Preliminary water service, meter, and backflow sizing for the private domestic system will also be provided. Preliminary sizing of the onsite private fire system is included in this report, but will need to be confirmed by the fire sprinkler system designer prior to installation.

Water System Design Criteria

The design criteria used in sizing the water distribution system piping for the Hope Apartments project are consistent with the Carlsbad Municipal Water District Potable Water Master Plan prepared by HDR Jacobs and dated June 17, 2019. Appendix A includes an excerpt of the first portion of Chapter 3 which includes the City's potable water design criteria.

These criteria include a minimum static pressure of 60 psi, a desired maximum static pressure of 125 psi, and a maximum static pressure allowed of 150 psi. Under Peak Hour Demand conditions, minimum residual pressure at any location must not be less than 40 psi. Under a Maximum Day Demand with Fire Flow, a minimum residual pressure of 20 psi must be maintained in the water system. Peaking factors used in analyzing demand scenarios were 1.6 for average day to maximum day demands and 2.9 for average day to peak hour demands.

Projected Water Demand

The expected water demand for the Hope Apartments project was estimated using water demand criteria from the Carlsbad Municipal Water District's Potable Water Master Plan. Table 1 below presents the estimated onsite water demand for the project.

TABLE 1 HOPE APARTMENTS AVERAGE WATER DEMAND					
Land Use	Quantity	Demand Factor ¹	Average Demand		
Multi-Family Residential	$156 \mathrm{DUs}$	185 gpd/DU	28,860 gpd		
TOTAL			28,860 gpd		

¹ Table 4-2 Design Criteria from CMWD Potable Water Master Plan, June 17, 2019.

Per Table 1, average day demand for the Hope Apartments project is 28,860 gpd or 20.0 gpm. The maximum day demand is 46,176 gpd or 32.0 gpm (ADD x 1.6). The peak hour demand is 83,694 gpd or 58.1 gpm (ADD x 2.9).

<u>Fire Flow Requirements</u>

The fire flow requirement for the Hope Apartments project is based the Carlsbad Fire Department "Fire Department Access & Water Requirements for Commercial and Residential Development Guideline". The fire flow requirement is determined based on Attachment 23 of this document CFC Table B105.1. Hope Apartments is proposed to be a 250,000 square foot building with a construction type of VA. This correlates to a 8,000 gpm fire flow requirement at 20 psi.

However, the building will have a fire sprinkler system, so the City allows the requirement to be reduced by 50% (4,000 gpm). This 4,000 gpm flow must be provided at public fire hydrants. Appendix B provides the relevant pages for calculating the fire flow requirement.

Existing Water System

The existing public water system to which the Hope Apartments project will connect is the 255 Pressure Zone. There are existing 6-inch lines north of the project in Grand Avenue west

of the project in Harding Street, and south of the project in Carlsbad Village Drive. The existing water system in the area is shown on Figure 2.

The building finished floor elevation within the Hope Apartments project is 68.5 feet. With service from the 255 Pressure Zone, this results in a maximum static pressure of 81 psi.

Proposed Water System

The Hope Apartments project is proposing to obtain potable water service from the existing 255 Pressure Zone system. This will be accomplished by making two connections to the proposed water line in Grand Avenue fronting the project: one connection will be made for the private domestic water system and one connection will be made for the private fire protection system.

As shown in Figure 3, the existing, public, potable water line in Grand Avenue will need to be upsized to serve the project. The project proposes to upsize the Grand avenue line to an 8-inch line from the intersection with Hope Avenue east to the existing 8-inch line in the easement.

Fire Protection Service. Fire protection service will be provided to the Hope Apartments project site by a minimum 8-inch service connection to the public water line in Grand Avenue, Figure 3 shows the location of this connection and service. This service will be required to have a minimum 8-inch backflow preventer. The Hope Apartments project will have one private, onsite fire hydrant connected via a minimum 8-inch private water line.

The City of Carlsbad has not provided a fire flow requirement for the onsite private hydrant, so the preliminary sizing provided is based on maintaining a minimum pressure of 20 psi during a fire flow event in the public system. The onsite, private fire system sizing will need to be confirmed by the fire sprinkler designer during the preparation of the private fire system plans.

Domestic Water Service. Domestic water service will be provided to the Hope Apartments site with one domestic water meter connected to existing 255 Pressure Zone piping. Figure 3 shows the proposed location of the domestic service, water meter, and backflow preventer.

A preliminary water fixture unit (WFU) count was performed to estimate the water meter size. By utilizing the 2019 California Plumbing Code, a WFU count can be equated to a peak flow rate in gpm which, in turn, can be used to recommend a water meter size. Note that the water meter sizing provided herein is a preliminary estimate. Once the building plumbing plans are finalized, the WFU count should be confirmed. The private onsite domestic water system will be sized at the time of final plumbing plans.

The peak flow rate in Table 2 differs with the peak hour demand presented earlier in this report as the WFU method is primarily reserved for meter sizing and takes a more conservative approach in calculating peak domestic water demand. A 4-inch lateral with a single 3-inch meter and 3-inch backflow preventer has a maximum continuous capacity of 400 gpm. This will be sufficient to serve the Hope Apartments project. WFU count and meter sizing calculations are available in Appendix C.

TABLE 2 HOPE APARTMENTS PROJECT PRELIMINARY WFU AND WATER METER SUMMARY				
WFUs	Peak Flow Rate	Water Meter Size		
2,051 331 gpm One 3-inch				

<u>Hydraulic Analysis</u>

The University of Kentucky KYPIPE program was used to model the existing and proposed water system for the Hope Apartments project. This computer program utilizes the Hazen-Williams equation for determining head-loss in pipes; the Hazen-Williams "C" value used for all pipes is 120. To simulate minor losses through pipe fittings and valves, all pipe lengths included in the hydraulic model were increased by 10 percent.

Available Hydraulic Grade Line Available. The available hydraulic grade line (HGL) was determined using fire hydrant flow test data for a fire hydrant located west of the project at the intersection of Jefferson Street and Home Avenue and a hydrant located south of the project on Carlsbad village Drive. The flow test data is provided in Appendix D for reference.

Using the data provided by the hydrant flow tests, an extrapolation calculation was executed to determine the available pressure and hydraulic grade line at various flow values for the tested fire hydrants. The extrapolation calculation for the fire hydrant is provided at the end of Appendix D.

Computer Model Analysis

Computer modeling of the existing public water system for the Hope Apartments project was performed to confirm that the public system can provide adequate domestic and fire protection service. The public system and water system was analyzed under a maximum day demand plus 4,000 gpm fire flow scenario.

Appendix E provides the results of the computer modeling for the analyzed water system. Exhibit A at the back of this report provides the Node and Pipe Diagram for the computer model.

<u>Analysis of Computer Model Results.</u> The results in Appendix D show that the water system presented in Figure 3 is adequate for domestic service and fire protection. To abide by City of Carlsbad design criteria, velocities must be below 15 fps during maximum day demand plus fire flow. Under maximum day demand plus fire flow, the results of the computer runs show that 4,000 gpm fire flow can be provided to the hydrants with minimum residual pressure of 33 psi and a maximum velocity of 14.1 fps. Under peak hour demand, the results of the computer runs show that minimum residual pressures are 63 psi and maximum pipe velocities are 0.66 fps.

Conclusions and Recommendations

The following recommendations and conclusions are made based on an analysis of the potable water system for the Hope Apartments project.

- 1. The Hope Apartments project will be served by the City of Carlsbad potable water 255 Pressure Zone system. Figure 2 presents the existing facilities near the project.
- 2. Water service will include two connections to the existing public water system: one connection will be made for the private domestic water system and one connection will be made for the private fire protection system. Figure 3 presents the locations of these connections and public water system improvements.
- 3. Maximum static pressures at finished floor elevation within the project will be 81 psi based on the maximum available hydraulic grade line of 255 feet delivered from the potable water 255 Pressure Zone.
- 4. To serve the Hope Apartments project the existing water line in Grand Avenue must be upsized to 8-inches from the intersection of Hope Avenue to the existing 8-inch easement line east of the project.
- 5. The proposed public water facilities are capable of delivering max day demand plus 4,000 gpm fire flow to two hydrants near the project. The minimum residual pressure is 33 psi and the maximum velocity is 14.1 fps.
- 6. Peak hour demand was modeled up to the project connection. The minimum residual pressure in this scenario is 64 psi.
- 7. All new potable water pipelines recommended for the project are to be designed to meet AWWA C900 DR 18 Class 235 for PVC pipe. The water system design must conform to the requirements of the Carlsbad Municipal Water District.

8. An individual pressure regulator must be installed on the 255 Pressure Zone potable water building supply to the apartment building in order to maintain building service pressures below 80 psi in accordance with the California Plumbing Code.

Thank you for the opportunity to assist with the potable water planning for the Hope Apartments project. If you have any questions about the enclosed information and recommendations, please do not hesitate to call.

Dexter Wilson Engineering, Inc.

not fit

Kathleen Heitt, P.E.

KH:MS:ah

Attachments

APPENDIX A

CARLSBAD MUNICIPAL WATER DISTRICT WATER SYSTEM DESIGN CRITERIA

Although the Total Revised Coliform Rule is now in effect, CMWD should closely monitor samples in affected areas to determine if additional assessments are required. Since 2016, the Level 1 and Level 2 assessments for non-compliance would require additional sampling efforts by CMWD.

CMWD should follow the development of state mandated water conservation measures and advocate for credit in achieving potable water use reductions through its recycled water program.

4.2 Design Criteria

As part of the planning process, design criteria from the previous master plan was reviewed with engineering and operations staff to re-confirm the design criteria or update specific criteria based on system operations the past five years.

4.2.1 Potable Water Criteria

Table 4-2 lists the design criteria for the 2019 Master Plan. Unit demands were revised based on current water demand information, as discussed in Section 3.1.

Item	Criteria			
Unit D	emands			
Single Family Residential	450 gpd/DU			
Multi-Family Residential	185 gpd/DU			
Non-Residential	1,500 gpd/acre			
Peaking	g Factors			
Minimum Day/Average Day Ratio	0.5			
Maximum Day/Average Day Ratio	1.6			
Maximum Month/Average Day Ratio	1.4			
Peak Hour/Average Day Ratio	2.9			
Piping/	Pipelines			
Maximum Velocity - Peak Hour	8 fps			
Maximum Velocity - Max Day + Fire	15 fps			
Maximum Headloss - desired at peak flow	5 ft/1,000 ft			
Maximum Headloss - allowable at peak flow	10 ft/1,000 ft			
Maximum length of dead-end pipe	150 ft			
Maximum No. of hydrants on a dead-end pipe	1			
Maximum No. of services off a dead-end pipe	18			
Pre	ssure			
Maximum Static - Desired	125 psi			
Maximum Static - Allowed	150 psi			
Minimum Static	60 psi			
Minimum Residual (Peak Hour)	40 psi			
Minimum Residual (Max Day + Fire)	20 psi			
Maximum desired pressure drop from static	25 psi			

Table 4-2: Water Master Plan Design Criteria

Table 4-2: Water Master Plan Design Criteria

Item	Criteria			
Typical	Fire Flows			
Single Family Residential	1,500 gpm for 2 hours			
Multi-Family Residential	3,000 gpm for 2 hours			
Non-Residential	4,000 gpm for 4 hours			
Sto	prage			
Operating Storage	15% MDD			
Fire Storage	Maximum fire flow x duration			
Emergency Reserve Storage (in-zone)	100% MDD			
Emergency Storage (Planned SDCWA shutdown)	10 x ADD			
Water Pressure Regulating Stations	_			
Minimum Number of Valves	2			
	Low = Average			
Capacity	High = MDD + Fire Flow			
Redundancy Required	Yes (by zone)			
Other	Pressure Relief Valve required at a minimum of one station per zone.			
Pump Station	_			
Pumping Period	24 hours			
Pumping Capacity	MDD for all zones served			
Minimum Number of Pumps	3 (2 duty + 1 standby)			
Redundancy	1 unit equal to largest duty pump			
Standby Power	Generator			

Notes:

fps=feet per second

Maximum velocity criteria are industry standard for new construction but may be exceeded under existing performance conditions if replacement costs are excessive and not critical to level of service. The fire flow velocity requirement of 10 fps in the 2012 Master Plan was determined to be conservative. It was increased to 15 fps to avoid oversizing small water mains creating water quality issues in the distribution system. Fire flow requirements for areas within Carlsbad that are designated as High and Very High Fire Hazard Severity Zones, shown on Figure 4-1, were reviewed, which in some cases may require higher fire flows.

APPENDIX B

PROJECT FIRE FLOW REQUIREMENTS

Kathleen Heitt

From:	Randy Metz <randy.metz@carlsbadca.gov></randy.metz@carlsbadca.gov>
Sent:	Tuesday, September 20, 2022 10:40 AM
То:	Patrick Zabrocki; Gina Ruiz
Cc:	tyler lawson; Kathleen Heitt; Shannon Harker; Austin Wermers
Subject:	RE: Hope Apartments - Fire Flow question

Good Morning Patrick.

Based on the information you have provided for a 205,000sf Type V-A construction building with fire sprinklers, the required fire flow for this project will be 4000gpms. The city has locally amended the sprinkler reduction to a 50% maximum, with the original required flow being 8000gpms. We also don't permit the use of private fire hydrants in order to achieve your fire flow so you will need to use 2 public hydrants, which can support this flow for a minimum of 4 hours. Although the code allows for a fire sprinkler reduction in flow, it does not reduce the amount of hours necessary to provide the original flow requirement.

I hope this helps in your planning efforts. If you have any additional questions, feel free to reach out to me.

Regards,

Randy

Randy Metz, EFO, CFO, FM, MIFireE Division Chief – Fire Marshal Community Risk Reduction Bureau City of Carlsbad Office: 442-339-2661 randy.metz@carlsbadca.gov

From: Patrick Zabrocki <PZabrocki@wermersproperties.com>
Sent: Tuesday, September 20, 2022 10:18 AM
To: Gina Ruiz <Gina.Ruiz@carlsbadca.gov>; Randy Metz <Randy.Metz@carlsbadca.gov>
Cc: tyler lawson <tlawson@plsaengineering.com>; Kathleen Heitt <kathleen@dwilsoneng.com>; Shannon Harker
<Shannon.Werneke@carlsbadca.gov>; Austin Wermers <AustinW@wermersproperties.com>
Subject: Hope Apartments - Fire Flow question

Hello Gina,

Thank you for chatting with me real quick yesterday when you were on the phone with Chris Schoeneck. I appreciate your assistance with our question.

The project I mentioned is the Hope Apartments project (CT2022-001/SDP 2022-006 (DEV2022-0030)(PRE 2022-0008)).

We are proposing a 156 unit apartment building consisting of a total of 205,234 sf, at the intersection of Grand and Hope (adjacent to the Lofts).

Carlsbad Fire Department Fire Prevention Bureau

Fire Department Access & Water Requirements for Commercial and Residential Development Guideline

Approved and Authorized by: Randall Metz, Fire Marshal Issued: February 18, 2021

- B. Manufacturer's specification of the material being installed must indicate that the application is consistent with the manufacturer's recommendations.
- C. Material shall only be installed on slopes of no more than one degree (1.75% grade), unless otherwise specified by the manufacturer, and drainage shall be provided as required to provide adequate traction for the fire apparatus. Surfaces shall be crowned or sloped to one side to drain water away from the roadway; surfaces shall not have a "V" or other configuration causing water to accumulate in the fire access roadway. This information shall be detailed on the plan.
- D. The design shall include a curb cut that delineates entry onto the engineered fire access surface from a street. A 4" or lower curb cut or a rolled/ramped curb is acceptable. The curb cut must be shown on the plan. The entry to the area shall be clearly marked as a fire lane with either a red curb or sign to prevent the entry from being blocked.
- E. A minimum four-inch wide concrete strip around the perimeter of the designated area shall be specified on the plan to clearly delineate the extent of fire department access. If the area is accessible to or intended to be used by anyone other than emergency responders, the concrete curb shall be painted red and stenciled "Fire Lane—No Parking" in white every 30 feet or portion thereof. In areas where painting the curb is not feasible, alternative methods of delineating the extent of the fire access roadway, such as by stamping "Fire Lane—No Parking" into the concrete, posting of signs, or by the use of red reflectors, may be acceptable if approved by Carlsbad plan review staff. Describe the method of identifying the extent of the fire access roadway clearly on the plan.
- F. The following sentence shall be placed, verbatim, as a note on the plan: "Final approval is subject to actual field acceptance testing utilizing Carlsbad fire apparatus."
- G. A clause requiring the maintenance of alternative access roadways shall be placed in the CCRs, deed, and/or similar documents.

8. Hydrant and Water Availability Requirements

Applicants must provide documentation that hydrants are provided in the quantity and spacing described in California Fire Code (CFC) Appendix C. This will prove that they are capable of delivering the amount of water required by CFC Appendix B. The quantity and spacing of hydrants are governed by the fire flow required for the structure(s) served. The required fire flow is dependent upon the size of the structure, type of construction, and whether the building is equipped with fire sprinklers. This information must be shown clearly on the plans to assist in the determination of the fire flow requirement.

- A. Water Availability To facilitate the review process and avoid untimely delays in project approval, applicants are strongly encouraged to arrange a hydrant flow test with the water company prior to submitting plans to the Carlsbad if the project includes a new structure or increase in the floor area of an existing structure. Water availability information may not be required to be submitted for every project, and plans may be submitted with a hydrant flow test pending, but the applicant should understand that project approval may be delayed if it is determined during review that this information is required. If the project requires evaluation of the available fire flow, it will not be approved without a completed Carlsbad <u>Water Availability form</u> or equivalent data sheets from a water district. Water availability information must be no older than six months.
 - 1) Obtain a <u>Water Availability form</u> from Carlsbad Building Department.
 - 2) Fill out the project and building information in the first section of the <u>Water</u> <u>Availability form</u>. Care should be taken when determining the applicable fire area for the project. As stated above, fire flow is dependent on several factors, so the largest building or group of structures is not necessarily the most demanding in terms of fire flow.
 - 3) Determine the required fire flow from CFC Table B105.1, provided in Attachment 23. A <u>maximum 50%</u> reduction in fire flow (but not duration) may be taken when the fire-flow calculation area consists only of buildings equipped with an approved automatic fire sprinkler system.
 - 4) Contact the local water company to request a hydrant flow test or fire flow modeling calculation and have a representative of the water company complete and sign the last section on the form. In some cases, the water company may allow or require a qualified third party to perform the flow test for you.
 - a) In newly developed areas without water infrastructure, the water department may issue a "will-serve" letter indicating the expected amount of water that will be delivered once the water system is installed and operational.
 - b) If multiple hydrants are located within the maximum distance allowed by CFC Table C105.1, the amount of water available from each hydrant may be combined, provided that the hydrants are flowed simultaneously.
 - c) It is the applicant's responsibility to ensure that the following information is provided at a minimum on either the water company's test data sheet and/or the Carlsbad <u>Water Availability form</u>:

- i. Static pressure and residual pressure in psi and observed flow in gpm; or
- ii. Calculated flow in gpm at 20 psi.
- d) Scan or photocopy the completed form or data sheets onto your plans or include the original with your plan submittal.
- 5) Please ensure that the fire area, building size, construction type, and flow data are complete and accurate. Errors or omissions in this information may result in plans having to be resubmitted or fire flow testing being redone.
- B. Fire-Flow Calculation Area The fire-flow calculation area shall be the total floor area of all floor levels within the exterior walls, and under the horizontal projections of the roof of a building, except as modified in Section B104.3. Portions of buildings which are separated by fire walls without openings, constructed in accordance with the California Building Code are allowed to be considered as separate fire-flow calculation areas. The fire-flow calculation area of buildings constructed of Type IA and Type IB construction shall be the area of the three largest successive floors. CFC Appendix B Section B104.
- C. Hydrant Location Hydrants shall be provided along the length of the fire access roadway in the quantities and up to the maximum distances prescribed in CFC Table C-105.1. See Attachments 24 and 29.
 - Hydrants must be located no more than three feet from the edge of a fire access roadway and cannot be located in areas where they will be visually or operationally obstructed (behind fences or walls, in bushes, behind parking spaces, etc.). Clearance shall be provided to a distance no less than three feet from the perimeter of the hydrant. Where hydrants are located in landscaped areas, a 4x4' concrete pad shall be required to ensure that vegetation does not encroach on this clear space.
 - 2) The hydrant outlets must face the fire access roadway. Where all of the outlets cannot face the fire access roadway (e.g., the hydrant is located in a landscape peninsula or island in a parking lot; the hydrant has three outlets), the 4" outlet(s) shall take precedence.
 - 3) The hydrant shall be located at least 40 feet from the building(s) it serves. Where it is impractical to locate the hydrant 40 feet from adjacent structures, additional hydrants may be provided or the hydrant may be located closer provided that nearby walls do not contain openings and the hydrant is not

ATTACHMENT 23

CFC TABLE B105.1:

Minimum Required Fire Flow and Flow Duration for Buildings as adopted by the City of Carlsbad

	FIRE FLOW C	FIRE FLOW	(gallons/min)				
Type IA and IB	Type IIA and IIIA	Type IV and VA	Type IIB and IIIB	Type VB	unsprinklered	sprinklered	Flow
				1990 10	commercial/SFR	commercial/SFR	Duration
0-22700	0-12700	0-8200	0-5900	0-3600	1500/1000	1500/1000	
22701-30200	12701-17000	8201-10900	5901-7900	3601-4800	1750	1500/1000	
30201-38700	17001-21800	10901-12900	7901-9800	4801-6200	2000	1500/1000	2
38701-48300	21801-24200	12901-17400	9801-12600	6201-7700	2250	1500/1125	2
48301-59000	24201-33200	17401-21300	12601-15400	7701-9400	2500	1500/1250	
59001-70900	33201-39700	21301-25500	15401-18400	9401-11300	2750	1500/1375	
70901-83700	39701-47100	25501-30100	18401-21800	11301-13400	3000	1500	
83701-97700	47101-54900	30101-35200	21801-25900	13401-15600	3250	1625	2
97701-112700	54901-63400	35201-40600	25901-29300	15601-18000	3500	1750	5
112701-128700	63401-72400	40601-46400	29301-33500	18001-20600	3750	1875	
128701-145900	72401-82100	46401-52500	33501-37900	20601-23300	4000	2000	
145901-164200	82101-92400	52501-59100	37901-42700	23301-26300	4250	2125	
164201-183400	92401-103100	59101-66000	42701-47700	26301-29300	4500	2250	
183401-203700	103101-114600	66001-73300	47701-53000	29301-32600	4750	2375	
203701-225200	114601-126700	73301-81100	53001-58600	32601-36000	5000	2500	
225201-247700	126701-139400	81101-89200	58601-65400	36001-39600	5250	2625	
247701-271200	139401-152600	89201-97700	65401-70600	39601-43400	5500	2750	
271201-295900	152601-166500	97701-106500	70601-77000	43401-47400	5750	2875	
295901+	166501+	106501-115800	77001-83700	47401-51500	6000	3000	4
		115801-125500	83701-90600	51501-55700	6250	3125	
		125501-135500	90601-97900	55701-60200	6500	3250	
		135501-145800	97901-106800	60201-64800	6750	3375	
		145801-156700	106801-113200	64801-69600	7000	3500	
		156701-167900	113201-121300	69601-74600	7250	3625	
		167901-179400	121301-129600	74601-79800	7500	3750	
		179401-191400	129601-138300	79801-85100	7750	3875	
		<mark>191401+</mark>	138301+	85101+	8000	4000	

Minimum fire flow for a detached, unsprinklered single-family residence/duplex up to 3600 sq.ft. is 1000 gpm.

Construction Types shall be based upon actual construction without applying 1-hour equivalency allowed by CBC Table 601 footnote 'e'.

Fire flow measured at 20 psi.

APPENDIX C

WATER FIXTURE UNIT COUNT AND METER SIZING Project Name Hope Apartments

 Job Number
 1040-003

 Date
 5/17/2022

Water Fixture Units

The basis for the Water Fixture Units is "Private" per the 2019 California Plumbing Code.

		Studio			1-BR			2-BR	
		FIXTURE	TOTAL		FIXTURE	TOTAL		FIXTURE	TOTAL
DESCRIPTION	QUANTITY	UNITS	FIXTURE	QUANTITY	UNITS	FIXTURE	QUANTITY	UNITS	FIXTURE
		EACH	UNITS		EACH	UNITS		EACH	UNITS
CLOTHES WASHER		4	0		4	0		4	0
LAUNDRY SINK		1.5	0		1.5	0		1.5	0
TUB/SHOWER	8	4	32	67	4	268	140	4	560
SHOWER		2	0		2	0		2	0
KITCHEN SINK	8	1.5	12	67	1.5	100.5	70	1.5	105
DISHWASHER		1.5	0		1.5	0		1.5	0
LAVATORY	8	1	8	67	1	67	140	1	140
WATER CLOSET (1.6 GPF)	8	2.5	20	67	2.5	167.5	140	2.5	350
HOSE BIBB		2.5	0		2.5	0		2.5	0
EACH ADDTL HB		1	0		1	0		1	0
OTHER			0			0			0
TOTAL			72			603			1155

		3-BR		Leasin	g/Roof	Deck	Re	c/Fitne	SS
		FIXTURE	TOTAL		FIXTURE	TOTAL		FIXTURE	TOTAL
DESCRIPTION	QUANTITY	UNITS	FIXTURE	QUANTITY	UNITS	FIXTURE	QUANTITY	UNITS	FIXTURE
		EACH	UNITS		EACH	UNITS		EACH	UNITS
CLOTHES WASHER		4	0		4	0		4	0
LAUNDRY SINK		1.5	0		1.5	0		1.5	0
TUB/SHOWER	22	4	88		4	0		4	0
SHOWER		2	0		2	0		2	0
KITCHEN SINK	11	1.5	16.5		1.5	0	1	1.5	1.5
DISHWASHER		1.5	0		1.5	0		1.5	0
LAVATORY	22	1	22	4	1	4	4	1	4
WATER CLOSET (1.6 GPF)	22	2.5	55	6	2.5	15	6	2.5	15
HOSE BIBB		2.5	0		2.5	0		2.5	0
EACH ADDTL HB		1	0		1	0		1	0
OTHER			0			0			0
TOTAL			181.5			19			20.5

Total WFU 2051

For SI units: 1 gallon per minute = 0.06 L/s

For SI units: 1 gallon per minute = 0.06 L/s

APPENDIX D

FIRE HYDRANT FLOW TEST AND EXTRAPOLATION CALCULATION

CARLSBAD FIRE DEPARTMENT Fire Prevention Division 1635 Faraday Avenue – Carlsbad, CA 92008 760.602.4665

WATER AVAILABILITY FORM

SECTION A: TO BE COMPLETED BY CUSTOMER

RNa

1

Title/Org: Project Manager

Signature:

PROJECT NAME: <u>Hope Apar</u>	tments	SR#:		
			(Assigned upon plan submitta	l)
PROJECT ADDRESS: <u>945/955</u>	Grand Ave (several services)	CITY: <u>Carlsbad</u>		
PHONE: (760) <u>438-4422 (m</u>	atthew@dwilsoneng.com) F	FAX NUMBER: (760) <u>4</u>	38-0173	
argest Building (ft. ²):	<u>~142,000</u> Sprin	kled? Yes	Construction Type:	
SECTION B: TO) BE COMPLETED BY LOCAL WA	TER COMPANY. CUS	TOMER TO PROVIDE RESUL	TS TO CFD.
Water Purveyor: <u>City</u>	of Carlsbad			
Location of test (refere	ence map required): <u>Grand /</u>	Ave at Hope Ave		
<u>TEST IN</u>	IFORMATION IS VALID FOR 6 M	ONTHS FROM DATE	PERFORMED	
	Flow	Test Results		
Static pressure:	<u>76</u> PSI	Hydrant Number (if	applicable): <u>H60648</u>	
Elevation of test:	<u>65 </u>	Main Size:	12	_INCH
Pressure Zone:	<u>241</u> Feet	Date/Time of Test: _		
Pitot Tube Reading:	PSI	Corresponding Flow	:GPM	
Total Flow:6,	<u>475 </u> GPM	Residual Pressure	<u>20</u> PSI	
<u>At peak demand</u> , this wa 6,475 gpm.	ter system is capable of providir	ng a fire flow discharg	ge at 20 psi in the vicinity of	the fire of
Note: If the water ava modeling), fill out the	ilability information was obtain information above as applicable	ed in a manner other and check here: <u>x</u>	than a flow test (i.e. compu	iter
Name: Jennifer R. Mae	P F	Englic No (if a	pplicable): C69606	

Date: <u>07/28/2022</u>

#277.D Hope Apartments - Fire Flow Analysis

Fire Hydrant Flow Test Date		5/17/2022		
Input Flow Test Results				
Static Pressure	76	PSI		
Residual Pressure	20	PSI		
Hydrant Flow	6475	GPM		
Actual Hydrant Elevation		Feet	HGL	Feet
Estimated Hydrant Elevation	65	Feet	HGL	240.4 Feet
Equation	ΔH = k Q ^{1.85}			

k = 1.14982E-05

Extrapolated Calculations

	Q, gpm	Residual Pressure	Available HGL
ADD	20	76.0 psi	240.4 ft
MDD	32	76.0 psi	240.4 ft
PHD	58	76.0 psi	240.4 ft
	330	75.8 psi	239.9 ft
	1300	73.1 psi	233.8 ft
	1500	72.3 psi	231.8 ft
	1700	71.3 psi	229.5 ft
	1900	70.2 psi	227.0 ft
	2000	69.6 psi	225.7 ft
	2100	69.0 psi	224.3 ft
	2332	67.5 psi	220.9 ft
	2474	66.6 psi	218.6 ft
MDD+FIRE	2650	65.3 psi	215.7 ft
	3000	62.5 psi	209.3 ft
	3042	62.2 psi	208.5 ft
	3300	59.9 psi	203.3 ft
	3500	58.1 psi	199.0 ft
	3700	56.1 psi	194.5 ft
	3900	54.1 psi	189.8 ft
	4032	52.7 psi	186.6 ft
	4100	52.0 psi	184.9 ft
	4300	49.7 psi	179.8 ft
	4500	47.4 psi	174.5 ft
	5000	41.3 psi	160.3 ft
	5760	30.9 psi	136.3 ft
	5750	31.0 psi	136.7 ft

Residual Pressure, psi	Available Flow, gpm
0 psi	7,637
10 psi	7,076
20 psi	6,475
30 psi	5,822
40 psi	5,099
50 psi	4,277
60 psi	3,290
70 psi	1,936
80 psi	Residual Pressure Exceeds Static Pressure
90 psi	Residual Pressure Exceeds Static Pressure
100 psi	Residual Pressure Exceeds Static Pressure
110 psi	Residual Pressure Exceeds Static Pressure
120 psi	Residual Pressure Exceeds Static Pressure
130 psi	Residual Pressure Exceeds Static Pressure
140 psi	Residual Pressure Exceeds Static Pressure
150 psi	Residual Pressure Exceeds Static Pressure
160 psi	Residual Pressure Exceeds Static Pressure
170 psi	Residual Pressure Exceeds Static Pressure
180 psi	Residual Pressure Exceeds Static Pressure
190 psi	Residual Pressure Exceeds Static Pressure

Signature:

1

Title/Org: Project Manager

CARLSBAD FIRE DEPARTMENT **Fire Prevention Division** 1635 Faraday Avenue - Carlsbad, CA 92008 760.602.4665

WATER AVAILABILITY FORM

SECTION A: TO BE COMPLETED BY CUSTOMER

OJECT NAME: <u>Hope A</u>	partments			SR#:		
				(Assign	ed upon plan submit	tal)
OJECT ADDRESS: <u>945</u>	/955 Grand A	<u>ve (several servi</u>	ces)	CITY: <u>Carl</u>	sbad	
ONE: (760) <u>438-4422</u>	<u>(matthew@</u>	dwilsoneng.com)FAX NUMBER: (760) <u>438-0173</u>		
rgest Building (ft. ²):	~142,000	1	Sprinkled? <u>Yes</u>	consti	ruction Type:	
SECTION B	: TO BE CON	IPLETED BY LO	CAL WATER COMPAN	Y. CUSTOMER TO	PROVIDE RESU	ILTS TO CFD.
Water Purveyor: <u>(</u>	City of Carlsb	ad				
Location of test (re	eference map	o required):	Carlsbad Village Drive	e east of Hope Ave		
<u>TES</u>	T INFORMA	TION IS VALID	FOR 6 MONTHS FROM	DATE PERFORME	<u>D</u>	
			Flow Test Results			
Static pressure:	76	PSI	Hydrant Num	ber (if applicable)	H60912	
Elevation of test:	65	Feet	Main Size:	8		INCH
Pressure Zone:	241	Feet	Date/Time of	Test:		
Pitot Tube Reading:		PSI	Correspondir	g Flow:	GPM	
Fotal Flow:	1,500	<u>G</u> PM	Residual Pres	ssure <u>48</u>	PSI	
<u>At peak demand</u> , this 4,375 gpm. The maxi	s water syste mum fire flo	m is capable of w requested is	providing a fire flow c 1,500 gpm as shown a	lischarge at 20 psi bove.	in the vicinity c	f the fire of
Note: If the water modeling), fill out	availability i the informat	nformation wa ion above as ap	s obtained in a manne oplicable and check he	r other than a flow re: <u>x</u>	r test (i.e. comp	outer
Name: <u>Jennifer R.</u>	Mael, P.E.	1- 0	Eng. Lic. N	lo. (if applicable): <u>(</u>	269606	

Date: 06/28/2022

#277.B Hope Apartments - Fire Flow Analysis

Fire Hydrant	Flow Test	Date
--------------	-----------	------

5/17/2022

Input Flow Test Results

si Results					
	Static Pressure	76	PSI		
	Residual Pressure	48	PSI		
	Hydrant Flow	1500	GPM		
Actua	l Hydrant Elevation		Feet	HGL	Feet
Estimated	Hydrant Elevation	65	Feet	HGL	240.4 Feet

 $\Delta H = k Q^{1.85}$ Equation

k = 8.60251E-05

Extrapolated Calculations

PHD

ADD MDD

Q, gpm	Residual Pressure	Available HGL
20	76.0 psi	240.4 ft
32	76.0 psi	240.4 ft
58	75.9 psi	240.3 ft
330	74.3 psi	236.5 ft
989.61	63.0 psi	210.5 ft
1382	51.9 psi	184.9 ft
1700	40.7 psi	158.9 ft
1900	32.6 psi	140.3 ft
2100	23.8 psi	120.0 ft
2300	14.3 psi	97.9 ft
2500	4.0 psi	74.1 ft
2600	-1.5 psi	61.6 ft
2700	-7.1 psi	48.7 ft
3000	-24.9 psi	7.4 ft
3100	-31.3 psi	-7.1 ft
3300	-44.4 psi	-37.5 ft
3500	-58.3 psi	-69.4 ft
3700	-72.8 psi	-103.0 ft
3900	-88.0 psi	-138.1 ft
4032	-98.4 psi	-162.2 ft
4100	-103.9 psi	-174.8 ft
4300	-120.5 psi	-213.1 ft
4500	-137.7 psi	-252.8 ft
5000	-183.7 psi	-359.0 ft
5760	-261.4 psi	-538.4 ft
5750	-260.3 psi	-535.9 ft

THE DIFFERENCE BETWEEN THE STATIC PRESSURE AND RESIDUAL PRESSURE IS 28 PSI FOR A RELATIVELY LOW FIRE HYDRANT LOW OF 1500 GPM. SINCE THERE IS A SIGNIFICANT DIFFERENCE BETWEEN THE STATIC AND RESIDUAL PRESSURE, IT WOULD MAKE SENSE THAT THE HGL IS NEGATIVE AT A HIGHER FLOW. THIS EXTRAPOLATION S ALSO CONSERVATIVE SINCE IT DOESN'T TAKE INTO ACCOUNT THE COMPLEX LOOPING OF THE ACTUAL SYSTEM.

_		
	Residual Pressure, psi	Available Flow, gpm
	0 psi	2,573
Γ	10 psi	2,384
	20 psi	2,182
	30 psi	1,962
	40 psi	1,718
	50 psi	1,441
	60 psi	1,108
	70 psi	652
	80 psi	Residual Pressure Exceeds Static Pressure
	90 psi	Residual Pressure Exceeds Static Pressure
	100 psi	Residual Pressure Exceeds Static Pressure
	110 psi	Residual Pressure Exceeds Static Pressure
	120 psi	Residual Pressure Exceeds Static Pressure
	130 psi	Residual Pressure Exceeds Static Pressure
	140 psi	Residual Pressure Exceeds Static Pressure
	150 psi	Residual Pressure Exceeds Static Pressure
	160 psi	Residual Pressure Exceeds Static Pressure
L	170 psi	Residual Pressure Exceeds Static Pressure
	180 psi	Residual Pressure Exceeds Static Pressure
Γ	190 psi	Residual Pressure Exceeds Static Pressure

APPENDIX E

COMPUTER MODELING RESULTS WATER SYSTEM ANALYSIS

NODE AND PIPE DIAGRAM REFERENCE:

Exhibit A at the back of the report.

CONDITIONS MODELED:

- 1. Peak Hour Demand
- 2. Max Day Demand plus 4,000 gpm Fire Flow split between Nodes 4 and 102
- 3. Max Day Demand plus 4,000 gpm Fire Flow split between Nodes 4, 16, and 102
- 4. Max Day Demand plus 4,000 gpm Fire Flow split between Nodes 16, 24, and 104

* * * * * * * * * * * * KYPIPE * * * * * * * * * * * * * * Pipe Network Modeling Software * * CopyRighted by KYPIPE LLC (www.kypipe.com) * * Version: 10.009 10/01/2019 * Company: Dexter Serial #: 592169 * Interface: Classic * Licensed for Pipe2018

Date & Time: Mon Nov 28 08:29:35 2022

Master File : \\ARTIC\Eng\1040003\KY Pipe\1040-003 hopeapartments2.KYP\1040-003 hopeapartments2.P2K

> *****

UNITS SPECIFIED

FLOWRATE = gallons/minute HEAD (HGL) $\ldots \ldots =$ feet PRESSURE = psig

PIPELINE DATA

| PIPE | NODE | NAMES | LENGTH | DIAMETER | ROUGHNESS | MINOR |
|------|-------|-------|---------|----------|-----------|-------------|
| NAME | #1 | #2 | (ft) | (in) | COEFF. | LOSS COEFF. |
| 1 | 0 | 2 | 1005.00 | 8.00 | 120.0000 | 0.00 |
| 2 | 2 | 4 | 50.00 | 8.00 | 120.0000 | 0.00 |
| 3 | 4 | 6 | 265.00 | 8.00 | 120.0000 | 0.00 |
| 5 | 6 | 8 | 50.00 | 8.00 | 120.0000 | 0.00 |
| 7 | 8 | I-BFP | 70.00 | 8.00 | 120.0000 | 0.00 |
| 9 | O-BFP | HYD | 130.00 | 8.00 | 120.0000 | 0.00 |
| 11 | 0 | 12 | 870.00 | 12.00 | 120.0000 | 0.00 |
| 13 | 12 | 14 | 1490.00 | 6.00 | 120.0000 | 0.00 |
| 15 | 14 | 16 | 610.00 | 8.00 | 120.0000 | 0.00 |
| 17 | 18 | 16 | 55.00 | 8.00 | 120.0000 | 0.00 |
| 19 | 8 | 18 | 115.00 | 8.00 | 120.0000 | 0.00 |
| 21 | 0 | 22 | 430.00 | 12.00 | 120.0000 | 0.00 |
| 23 | 22 | 24 | 430.00 | 6.00 | 120.0000 | 0.00 |
| 25 | 24 | 2 | 174.00 | 6.00 | 120.0000 | 0.00 |
| 101 | 100 | 102 | 920.00 | 8.00 | 120.0000 | 0.00 |
| 103 | 104 | 102 | 425.00 | 6.00 | 120.0000 | 0.00 |
| 105 | 24 | 104 | 540.00 | 6.00 | 120.0000 | 0.00 |

PUMP/LOSS ELEMENT DATA

THERE IS A DEVICE AT NODE 100 DESCRIBED BY THE FOLLOWING DATA: (ID= 2)

| HEAD | FLOWRATE | EFFICIENCY |
|--------|----------|------------|
| (ft) | (gpm) | (응) |
| 175.38 | 0.00 | 75.00 |
| 110.77 | 1500.00 | 75.00 |
| -57.88 | 3000.00 | 75.00 |

THERE IS A DEVICE AT NODE 0 DESCRIBED BY THE FOLLOWING DATA: (ID= 3)

| HEAD | FLOWRATE | EFFICIENCY |
|---------|----------|------------|
| (ft) | (gpm) | (%) |
| 175.38 | 0.00 | 75.00 |
| 46.15 | 6475.00 | 75.00 |
| -291.14 | 12950.00 | 75.00 |

THERE IS A DEVICE AT NODE

NUDE

BFP DESCRIBED BY THE FOLLOWING DATA: (ID= 1)

| HEAD | FLOWRATE | EFFICIENC | CY |
|--------|----------|-----------|-----------|
| (ft) | (gpm) | (%) | |
| -22.62 | 500.00 | 75.00 | (Default) |
| -22.85 | 1000.00 | 75.00 | (Default) |
| -23.08 | 1500.00 | 75.00 | (Default) |
| -23.31 | 2000.00 | 75.00 | (Default) |
| | | | |

NODE DATA

| NODE
NAME | NODE
TITLE | EXTERNAL
DEMAND
(gpm) | JUNCTION
ELEVATION
(ft) | EXTERNAL
GRADE
(ft) |
|--------------|---------------|-----------------------------|-------------------------------|---------------------------|
| 2 | | 0.00 | 62.00 | |
| 4 | | 0.00 | 65.00 | |
| 6 | | 58.00 | 65.00 | |
| 8 | | 0.00 | 66.00 | |
| 12 | | 0.00 | 56.00 | |
| 14 | | 0.00 | 63.00 | |
| 16 | | 0.00 | 72.00 | |
| 18 | | 0.00 | 71.00 | |
| 22 | | 0.00 | 61.00 | |
| 24 | | 0.00 | 60.00 | |
| 100 | | | 65.00 | 65.00 |
| 102 | | 0.00 | 72.00 | |
| 104 | | 0.00 | 62.00 | |
| 0 | | | 62.00 | 62.00 |
| O-BFP | | 0.00 | 68.00 | |
| HYD | | 0.00 | 70.00 | |
| I-BFP | | 0.00 | 68.00 | |

OUTPUT OPTION DATA OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT MAXIMUM AND MINIMUM PRESSURES = 5 MAXIMUM AND MINIMUM VELOCITIES = 5 MAXIMUM AND MINIMUM HEAD LOSS/1000 = 5 SYSTEM CONFIGURATION NUMBER OF PIPES(P) = (P)17 NUMBER OF END NODES(J) = 14 NUMBER OF PRIMARY LOOPS(L) = 2 NUMBER OF SUPPLY NODES (F) = 2 1 NUMBER OF SUPPLY ZONES (Z) = _____

Case: 1 = PEAK HOUR DEMAND

PIPELINE RESULTS

| PIPE
NAME | NODE 1
#1 | NUMBERS
#2 | FLOWRATE | HEAD
LOSS | MINOR
LOSS | LINE
VELO. | HL+ML/
1000 | HL/
1000 |
|--------------|--------------|---------------|----------|--------------|---------------|---------------|----------------|-------------|
| | | | gpm | ft
 | ft
 | ft/s | ft/f | ft/f
 |
| 1 | 0 | 2 | 10.75 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 |
| 2 | 2 | 4 | 48.06 | 0.00 | 0.00 | 0.31 | 0.08 | 0.08 |
| 3 | 4 | 6 | 48.06 | 0.02 | 0.00 | 0.31 | 0.08 | 0.08 |
| 5 | 6 | 8 | -9.94 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 |
| 7 | 8 | I-BFP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 9 | O-BFP | HYD | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 11 | 0 | 12 | 9.94 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 |
| 13 | 12 | 14 | 9.94 | 0.03 | 0.00 | 0.11 | 0.02 | 0.02 |
| 15 | 14 | 16 | 9.94 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 |
| 17 | 18 | 16 | -9.94 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 |
| 19 | 8 | 18 | -9.94 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 |
| 21 | 0 | 22 | -20.69 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 |
| 23 | 22 | 24 | -20.69 | 0.03 | 0.00 | 0.23 | 0.07 | 0.07 |
| 25 | 24 | 2 | 37.31 | 0.03 | 0.00 | 0.42 | 0.19 | 0.19 |
| 101 | 100 | 102 | 58.00 | 0.10 | 0.00 | 0.37 | 0.11 | 0.11 |

| 103
105 | | 104
24 | 102
104 |
 | 58.00
58.00 | 0.19
0.24 | 0.00 | 0.60 | 6 0.4
6 0.4 | 4 0.
4 0. | 44
44 |
|------------|-----------------|---------------------|----------------------|--------------------|---------------------|-----------------------|------------------------|--------------------|--------------------|------------------|----------------------|
| PUMP/LO | OSS EL | EMENT | RESU | LTS | | | | | | | |
| NAME | FLOWRATE
gpm | INLET
HEAD
ft | OUTLET
HEAD
ft | PUMP
HEAD
ft | EFFIC-
ENCY
% | USEFUL
POWER
Hp | INCREMTL
COST
\$ | TOTAL
COST
Ş | #PUMPS
PARALLEL | #PUMPS
SERIES | NPSH
Avail.
ft |

| | | | | | | | · | | | | | |
|-------------|-------------|--------|-----------|----------|--------|--------|-----|-----|-----|-----|-------|--|
| 100 | 58.00 | 0.00 | 175.23 | 175.2 | 75.00 | 3. | 0.1 | 0.1 | ** | * * | 33.2 | |
| Device "O | " is closed | | | | | | | | | | | |
| 0 | 0.00 | 0.00 | 177.67 | 0.0 | 75.00 | 0. | 0.0 | 0.0 | * * | * * | 33.2 | |
| Warning P2K | 107:Device | | BFP is op | perating | out of | range. | | | | | | |
| BFP | 0.00 | 171.65 | 149.26 | -22.4 | 75.00 | 0. | 0.0 | 0.0 | * * | * * | 204.8 | |

NODE RESULTS

| NODE
NAME | NODE
TITLE | EXTERNAL
DEMAND
gpm | HYDRAULIC
GRADE
ft | NODE
ELEVATION
ft | PRESSURE
HEAD
ft | NODE
PRESSURE
psi |
|--------------|---------------|---------------------------|--------------------------|-------------------------|------------------------|-------------------------|
| 2 | | 0.00 | 239.67 | 62.00 | 177.67 | 76.99 |
| 4 | | 0.00 | 239.67 | 65.00 | 174.67 | 75.69 |
| 6 | | 58.00 | 239.64 | 65.00 | 174.64 | 75.68 |
| 8 | | 0.00 | 239.65 | 66.00 | 173.65 | 75.25 |
| 12 | | 0.00 | 239.67 | 56.00 | 183.67 | 79.59 |
| 14 | | 0.00 | 239.65 | 63.00 | 176.65 | 76.55 |
| 16 | | 0.00 | 239.65 | 72.00 | 167.65 | 72.65 |
| 18 | | 0.00 | 239.65 | 71.00 | 168.65 | 73.08 |
| 22 | | 0.00 | 239.67 | 61.00 | 178.67 | 77.43 |
| 24 | | 0.00 | 239.70 | 60.00 | 179.70 | 77.87 |
| 100 | | | 240.23 | 65.00 | 175.23 | 75.93 |
| 102 | | 0.00 | 240.13 | 72.00 | 168.13 | 72.86 |
| 104 | | 0.00 | 239.94 | 62.00 | 177.94 | 77.11 |
| 0 | | | 239.67 | 62.00 | 177.67 | 76.99 |
| O-BFP | | 0.00 | 217.26 | 68.00 | 149.26 | 64.68 |
| HYD | | 0.00 | 217.26 | 70.00 | 147.26 | 63.81 |
| I-BFP | | 0.00 | 239.65 | 68.00 | 171.65 | 74.38 |

MAXIMUM AND MINIMUM VALUES PRESSURES

| JUNCTION
NUMBER | MAXIMUM
PRESSURES
psi | JUNCTION
NUMBER | MINIMUM
PRESSURES
psi |
|--------------------|-----------------------------|--------------------|-----------------------------|
| 12 | 79.59 | HYD | 63.81 |
| 24 | 77.87 | O-BFP | 64.68 |
| 22 | 77.43 | 16 | 72.65 |
| 104 | 77.11 | 102 | 72.86 |
| 0 | 76.99 | 18 | 73.08 |
| | | | |

VELOCITIES

| PIPE
NUMBER | MAXIMUM
VELOCITY
(ft/s) | PIPE
NUMBER | MINIMUM
VELOCITY
(ft/s) |
|------------------------------|--------------------------------------|-------------------------------|--|
| 103
105
25
101
2 | 0.66
0.66
0.42
0.37
0.31 |
11
21
5
15
17 | 0.03
0.06
0.06
0.06
0.06
0.06 |
| HL+ML / 1 | 0 0 0 | | |
| PIPE
NUMBER | MAXIMUM
HL+ML/1000
(ft/ft) | PIPE
NUMBER | MINIMUM
HL+ML/1000
(ft/ft) |

105 0.44 11 0.00

| 103 | 0.44 | 21 | 0.00 |
|-----|------|----|------|
| 25 | 0.19 | 5 | 0.00 |
| 101 | 0.11 | 15 | 0.00 |
| 3 | 0.08 | 17 | 0.00 |

HL / 1000

| PIPE
NUMBER | MAXIMUM
HL/1000
(ft/ft) | PIPE
NUMBER | MINIMUM
HL/1000
(ft/ft) |
|----------------|-------------------------------|----------------|-------------------------------|
| 105 | 0.44 | 11 | 0.00 |
| 103 | 0.44 | 21 | 0.00 |
| 25 | 0.19 | 5 | 0.00 |
| 101 | 0.11 | 15 | 0.00 |
| 3 | 0.08 | 17 | 0.00 |

SUMMARY OF INFLOWS AND OUTFLOWS

(+) INFLOWS INTO THE SYSTEM FROM SUPPLY NODES

(-) OUTFLOWS FROM THE SYSTEM INTO SUPPLY NODES

| | NODE
NAME | 2 | FLOV
gpn | VRATE
n | NODE
TITLE |
|-----|--------------|---------|-------------|------------|---------------|
| | 100 | | | 58.00 | |
| NET | SYSTEM | INFLOW | = | 58.00 | |
| NET | SYSTEM | OUTFLOW | = | 0.00 | |
| NET | SYSTEM | DEMAND | = | 58.00 | |
| | | | | | |

Case: 2 = MAX DAY DEMAND + 4,000 GPM FIRE FLOW SPLIT NODES 4 AND 102

PIPELINE RESULTS

| PIPE
NAME | NODE
#1 | NUMBERS
#2 | FLOWRATE | HEAD
LOSS | MINOR
LOSS | LINE
VELO. | HL+ML/
1000 | HL/
1000 |
|--------------|------------|---------------|----------|--------------|---------------|---------------|----------------|-------------|
| | | | gpm | ft | ft | ft/s | ft/f | ft/f |
| 1 | 0 | 2 | 1276.30 | 33.46 | 0.00 | 8.15 | 33.29 | 33.29 |
| 2 | 2 | 4 | 1575.10 | 2.46 | 0.00 | 10.05 | 49.15 | 49.15 |
| 3 | 4 | 6 | -424.90 | 1.15 | 0.00 | 2.71 | 4.34 | 4.34 |
| 5 | 6 | 8 | -456.90 | 0.25 | 0.00 | 2.92 | 4.97 | 4.97 |
| 7 | 8 | I-BFP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 9 | O-BFP | HYD | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 11 | 0 | 12 | 456.90 | 0.60 | 0.00 | 1.30 | 0.69 | 0.69 |
| 13 | 12 | 14 | 456.90 | 30.04 | 0.00 | 5.18 | 20.16 | 20.16 |
| 15 | 14 | 16 | 456.90 | 3.03 | 0.00 | 2.92 | 4.97 | 4.97 |
| 17 | 18 | 16 | -456.90 | 0.27 | 0.00 | 2.92 | 4.97 | 4.97 |
| 19 | 8 | 18 | -456.90 | 0.57 | 0.00 | 2.92 | 4.97 | 4.97 |
| 21 | 0 | 22 | 906.02 | 1.05 | 0.00 | 2.57 | 2.45 | 2.45 |
| 23 | 22 | 24 | 906.02 | 30.80 | 0.00 | 10.28 | 71.64 | 71.64 |
| 25 | 24 | 2 | 298.80 | 1.60 | 0.00 | 3.39 | 9.18 | 9.18 |
| 101 | 100 | 102 | 1392.78 | 36.00 | 0.00 | 8.89 | 39.13 | 39.13 |
| 103 | 104 | 102 | 607.22 | 14.51 | 0.00 | 6.89 | 34.14 | 34.14 |
| 105 | 24 | 104 | 607.22 | 18.44 | 0.00 | 6.89 | 34.14 | 34.14 |

PUMP/LOSS ELEMENT RESULTS

| NÆ | ME | FLOWRATE
gpm | INLET
HEAD
ft | OUTLET
HEAD
ft | PUMP
HEAD
ft | EFFIC-
ENCY
% | USEFUL
POWER
Hp | INCREMTL
COST
\$ | TOTAL
COST
\$ | #PUMPS
PARALLEL | #PUMPS
SERIES | NPSH
Avail.
ft | |
|---------|--------|-----------------|---------------------|----------------------|--------------------|---------------------|-----------------------|------------------------|---------------------|--------------------|------------------|----------------------|--|
| | | | | | | | | | | | | | |
| | 100 | 1392.78 | 0.00 | 119.06 | 119.1 | 75.00 | 42. | 0.1 | 0.3 | * * | ** | 33.2 | |
| 1.0000 | | | | | | | | | | | | | |
| | 0 | 2639.22 | 0.00 | 150.86 | 150.9 | 75.00 | 101. | 5.0 | 5.0 | * * | * * | 33.2 | |
| 1.0000 | | | | | | | | | | | | | |
| Warning | g P2K1 | 07:Device | | BFP is op | perating | out of | range. | | | | | | |
| | BFP | 0.00 | 110.35 | 87.97 | -22.4 | 75.00 | 0. | 0.0 | 0.0 | * * | * * | 143.6 | |
| 1.0000 | | | | | | | | | | | | | |

NODE RESULTS

| NODE
NAME | NODE
TITLE | EXTERNAL I
DEMAND
gpm | HYDRAULIC
GRADE
ft | NODE
ELEVATION
ft | PRESSURE
HEAD
ft | NODE
PRESSURE
psi |
|--------------|---------------|-----------------------------|--------------------------|-------------------------|------------------------|-------------------------|
| 2 | | 0.00 | 179.41 | 62.00 | 117.41 | 50.88 |
| 4 | | 2000.00 | 176.95 | 65.00 | 111.95 | 48.51 |
| 6 | | 32.00(0.55 | 5) 178.10 | 65.00 | 113.10 | 49.01 |
| 8 | | 0.00 | 178.35 | 66.00 | 112.35 | 48.69 |
| 12 | | 0.00 | 212.26 | 56.00 | 156.26 | 67.71 |
| 14 | | 0.00 | 182.22 | 63.00 | 119.22 | 51.66 |
| 16 | | 0.00 | 179.19 | 72.00 | 107.19 | 46.45 |
| 18 | | 0.00 | 178.92 | 71.00 | 107.92 | 46.77 |
| 22 | | 0.00 | 211.81 | 61.00 | 150.81 | 65.35 |
| 24 | | 0.00 | 181.01 | 60.00 | 121.01 | 52.44 |
| 100 | | | 184.06 | 65.00 | 119.06 | 51.59 |
| 102 | | 2000.00 | 148.06 | 72.00 | 76.06 | 32.96 |
| 104 | | 0.00 | 162.57 | 62.00 | 100.57 | 43.58 |
| 0 | | | 212.86 | 62.00 | 150.86 | 65.37 |
| O-BFP | | 0.00 | 155.97 | 68.00 | 87.97 | 38.12 |
| HYD | | 0.00 | 155.97 | 70.00 | 85.97 | 37.25 |
| I-BFP | | 0.00 | 178.35 | 68.00 | 110.35 | 47.82 |

MAXIMUM AND MINIMUM VALUES PRESSURES

| ال
ا | UNCTION
NUMBER | MAXIMUM
PRESSURES
psi | JUNCTION
NUMBER | MINIMUM
PRESSURES
psi |
|---------|------------------------------|---|----------------------------------|---|
| | 12
0
22
24
14 | 67.71
65.37
65.35
52.44
51.66 | 102
HYD
O-BFP
104
16 | 32.96
37.25
38.12
43.58
46.45 |
| VELO | ОСІТІ | E S | | |
|] | PIPE
NUMBER | MAXIMUM
VELOCITY
(ft/s) | PIPE
NUMBER | MINIMUM
VELOCITY
(ft/s) |
| | 23
2
101
1
103 | 10.28
10.05
8.89
8.15
6.89 | 11
21
3
5
15 | 1.30
2.57
2.71
2.92
2.92 |
| H L + I | ML / 1 | 0 0 0 | | |
|] | PIPE
NUMBER | MAXIMUM
HL+ML/1000
(ft/ft) | PIPE
NUMBER | MINIMUM
HL+ML/1000
(ft/ft) |
| | 23
2
101
103
105 | 71.64
49.15
39.13
34.14
34.14 | 11
21
3
17
15 | 0.69
2.45
4.34
4.97
4.97 |

| ΗL | / 1000
PIPE
NUMBER | MAXIMUM
HL/1000
(ft/ft) | PIPE
NUMBER | MINIMUM
HL/1000
(ft/ft) |
|----|--------------------------|-------------------------------|----------------|-------------------------------|
| | 23 | 71.64 | 11 | 0.69 |
| | 2 | 49.15 | 21 | 2.45 |
| | 101 | 39.13 | 3 | 4.34 |

November 28, 2022 Dexter Wilson Engineering, Inc. Job 1040-003

10334.14174.9710534.14154.97

SUMMARY OF INFLOWS AND OUTFLOWS

(+) INFLOWS INTO THE SYSTEM FROM SUPPLY NODES

(-) OUTFLOWS FROM THE SYSTEM INTO SUPPLY NODES

| NODE
NAME | FLOWRATE
gpm | NODE
TITLE |
|--------------|--------------------|---------------|
| 100
0 | 1392.78
2639.22 | |
| | | |

NET SYSTEM INFLOW = 4032.00 NET SYSTEM OUTFLOW = 0.00 NET SYSTEM DEMAND = 4032.00

Case: 3 = MAX DAY DEMAND + 4,000 GPM FIRE FLOW SPLIT NODES 4, 16, AND 102

PIPELINE RESULTS

| PIPE | NODE
#1 | NUMBERS
#2 | FLOWRATE | HEAD | MINOR | LINE | HL+ML/ | HL/ |
|------|------------|---------------|----------|-------|-------|-------|--------|-------|
| NAME | #1 | #2 | gpm | ft | ft | ft/s | ft/f | ft/f |
| 1 | 0 | 2 | 1421.19 | 40.83 | 0.00 | 9.07 | 40.62 | 40.62 |
| 2 | 2 | 4 | 2212.02 | 4.61 | 0.00 | 14.12 | 92.18 | 92.18 |
| 3 | 4 | 6 | 712.02 | 2.99 | 0.00 | 4.54 | 11.29 | 11.29 |
| 5 | 6 | 8 | 680.02 | 0.52 | 0.00 | 4.34 | 10.37 | 10.37 |
| 7 | 8 | I-BFP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 9 | O-BFP | HYD | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 11 | 0 | 12 | 569.98 | 0.90 | 0.00 | 1.62 | 1.04 | 1.04 |
| 13 | 12 | 14 | 569.98 | 45.24 | 0.00 | 6.47 | 30.37 | 30.37 |
| 15 | 14 | 16 | 569.98 | 4.56 | 0.00 | 3.64 | 7.48 | 7.48 |
| 17 | 18 | 16 | 680.02 | 0.57 | 0.00 | 4.34 | 10.37 | 10.37 |
| 19 | 8 | 18 | 680.02 | 1.19 | 0.00 | 4.34 | 10.37 | 10.37 |
| 21 | 0 | 22 | 894.90 | 1.03 | 0.00 | 2.54 | 2.39 | 2.39 |
| 23 | 22 | 24 | 894.90 | 30.11 | 0.00 | 10.15 | 70.02 | 70.02 |
| 25 | 24 | 2 | 790.83 | 9.69 | 0.00 | 8.97 | 55.69 | 55.69 |
| 101 | 100 | 102 | 1145.93 | 25.09 | 0.00 | 7.31 | 27.27 | 27.27 |
| 103 | 104 | 102 | 104.07 | 0.55 | 0.00 | 1.18 | 1.30 | 1.30 |
| 105 | 24 | 104 | 104.07 | 0.70 | 0.00 | 1.18 | 1.30 | 1.30 |

PUMP/LOSS ELEMENT RESULTS

| NAME | FLOWRATE
gpm | INLET
HEAD
ft | OUTLET
HEAD
ft | PUMP
HEAD
ft | EFFIC-
ENCY
% | USEFUL
POWER
Hp | INCREMTL
COST
\$ | TOTAL
COST
Ş | #PUMPS
PARALLEL | #PUMPS
SERIES | NPSH
Avail.
ft | |
|--------------|-----------------|---------------------|----------------------|--------------------|---------------------|-----------------------|------------------------|--------------------|--------------------|------------------|----------------------|--|
| 100 | 1145.93 | 0.00 | 136.14 | 136.1 | 75.00 | 39. | 2.1 | 2.3 | ** | ** | 33.2 | |
| 0 | 2886.07 | 0.00 | 146.45 | 146.4 | 75.00 | 107. | 5.0 | 10.0 | * * | * * | 33.2 | |
| Warning P2K1 | 07:Device | | BFP is op | perating | out of | range. | | | | | | |
| BFP | 0.00 | 91.50 | 69.12 | -22.4 | 75.00 | 0. | 0.0 | 0.0 | * * | * * | 124.7 | |

NODE RESULTS

| NODE
NAME | NODE
TITLE | EXTERNAL H
DEMAND
gpm | HYDRAULIC
GRADE
ft | NODE
ELEVATION
ft | PRESSURE
HEAD
ft | NODE
PRESSURE
psi |
|--------------|---------------|-----------------------------|--------------------------|-------------------------|------------------------|-------------------------|
| 2 | | 0.00 | 167.62 | 62.00 | 105.62 | 45.77 |
| 4 | | 1500.00 | 163.01 | 65.00 | 98.01 | 42.47 |
| 6 | | 32.00(0.55 | 5) 160.02 | 65.00 | 95.02 | 41.18 |
| 8 | | 0.00 | 159.50 | 66.00 | 93.50 | 40.52 |
| 12 | | 0.00 | 207.55 | 56.00 | 151.55 | 65.67 |
| 14 | | 0.00 | 162.30 | 63.00 | 99.30 | 43.03 |
| 16 | | 1250.00 | 157.74 | 72.00 | 85.74 | 37.15 |
| 18 | | 0.00 | 158.31 | 71.00 | 87.31 | 37.83 |

| 22 | 0.00 | 207.42 | 61.00 | 146.42 | 63.45 |
|-------|---------|--------|-------|--------|-------|
| 24 | 0.00 | 177.31 | 60.00 | 117.31 | 50.83 |
| 100 | | 201.14 | 65.00 | 136.14 | 58.99 |
| 102 | 1250.00 | 176.05 | 72.00 | 104.05 | 45.09 |
| 104 | 0.00 | 176.61 | 62.00 | 114.61 | 49.66 |
| 0 | | 208.45 | 62.00 | 146.45 | 63.46 |
| O-BFP | 0.00 | 137.12 | 68.00 | 69.12 | 29.95 |
| HYD | 0.00 | 137.12 | 70.00 | 67.12 | 29.08 |
| I-BFP | 0.00 | 159.50 | 68.00 | 91.50 | 39.65 |

MAXIMUM AND MINIMUM VALUES

PRESSURES

| JUNCTION | MAXIMUM | JUNCTION | MINIMUM |
|----------|-----------|----------|-----------|
| NUMBER | PRESSURES | NUMBER | PRESSURES |
| | psi | | psi |
| | | | |
| 12 | 65.67 | HYD | 29.08 |
| 0 | 63.46 | O-BFP | 29.95 |
| 22 | 63.45 | 16 | 37.15 |
| 100 | 58.99 | 18 | 37.83 |
| 24 | 50.83 | I-BFP | 39.65 |
| | | | |

VELOCITIES

| PIPE
NUMBER | MAXIMUM
VELOCITY
(ft/s) | PIPE
NUMBER | MINIMUM
VELOCITY
(ft/s) |
|----------------|-------------------------------|----------------|-------------------------------|
| 2 | 14.12 | 105 | 1.18 |
| 23 | 10.15 | 103 | 1.18 |
| 1 | 9.07 | 11 | 1.62 |
| 25 | 8.97 | 21 | 2.54 |
| 101 | 7.31 | 15 | 3.64 |

HL+ML / 1000

| PIPE
NUMBER | MAXIMUM
HL+ML/1000
(ft/ft) | PIPE
NUMBER | MINIMUM
HL+ML/1000
(ft/ft) |
|----------------|----------------------------------|----------------|----------------------------------|
| | | | |
| 2 | 92.18 | 11 | 1.04 |
| 23 | 70.02 | 105 | 1.30 |
| 25 | 55.69 | 103 | 1.30 |
| 1 | 40.62 | 21 | 2.39 |
| 13 | 30.37 | 15 | 7.48 |

HL / 1000

| PIPE
NUMBER | MAXIMUM
HL/1000
(ft/ft) | PIPE
NUMBER | MINIMUM
HL/1000
(ft/ft) |
|----------------|-------------------------------|----------------|-------------------------------|
| 2 | 92.18 | 11 | 1.04 |
| 23 | 70.02 | 105 | 1.30 |
| 25 | 55.69 | 103 | 1.30 |
| 1 | 40.62 | 21 | 2.39 |

SUMMARY OF INFLOWS AND OUTFLOWS

(+) INFLOWS INTO THE SYSTEM FROM SUPPLY NODES

(-) OUTFLOWS FROM THE SYSTEM INTO SUPPLY NODES

| NODE | FLOWRATE | NODE |
|------|----------|-------|
| NAME | gpm | TITLE |
| 100 | 1145.93 | |

November 28, 2022 Dexter Wilson Engineering, Inc. Job 1040-003

0 2886.07

NET SYSTEM INFLOW = 4032.00 NET SYSTEM OUTFLOW = 0.00 NET SYSTEM DEMAND = 4032.00

| Case: 3 | = | MAX DAY | DEMAND + | 4,000 GPM | FIRE FLOW | SPLIT | NODES 1 | .6, 24, A | ND 104 |
|------------------------|-------|------------------------|------------------|-----------|--------------------|---------------------|-----------------------|------------------------|---------------------|
| PIPELI
PIPE
NAME | NE RE | SULT
NODE NUM
#1 | S
IBERS
#2 | FLOWRATE | HEAD
LOSS
ft | MINOR
LOSS
ft | LINE
VELO.
ft/s | HL+ML/
1000
ft/f | HL/
1000
ft/f |
| 1 | | 0 | 2 | 1406.32 | 40.04 | 0.00 | 8.98 | 39.84 | 39.84 |
| 2 | | 2 | 4 | 763.85 | 0.64 | 0.00 | 4.88 | 12.86 | 12.86 |
| 3 | | 4 | 6 | 763.85 | 3.41 | 0.00 | 4.88 | 12.86 | 12.86 |
| 5 | | 6 | 8 | 705.85 | 0.56 | 0.00 | 4.50 | 11.11 | 11.11 |
| 7 | | 8 I | -BFP | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 9 | 0-1 | BFP | HYD | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 11 | | 0 | 12 | 544.15 | 0.83 | 0.00 | 1.54 | 0.95 | 0.95 |
| 13 | | 12 | 14 | 544.15 | 41.52 | 0.00 | 6.17 | 27.87 | 27.87 |
| 15 | | 14 | 16 | 544.15 | 4.19 | 0.00 | 3.47 | 6.86 | 6.86 |
| 17 | | 18 | 16 | 705.85 | 0.61 | 0.00 | 4.50 | 11.11 | 11.11 |
| 19 | | 8 | 18 | 705.85 | 1.28 | 0.00 | 4.50 | 11.11 | 11.11 |
| 21 | | 0 | 22 | 1113.01 | 1.54 | 0.00 | 3.16 | 3.59 | 3.59 |
| 23 | | 22 | 24 | 1113.01 | 45.09 | 0.00 | 12.63 | 104.87 | 104.87 |
| 25 | | 24 | 2 | -642.48 | 6.60 | 0.00 | 7.29 | 37.90 | 37.90 |
| 101 | | 100 | 102 | 994.51 | 19.29 | 0.00 | 6.35 | 20.97 | 20.97 |
| 103 | | 104 | 102 | -994.51 | 36.18 | 0.00 | 11.28 | 85.13 | 85.13 |
| 105 | | 24 | 104 | 255.49 | 3.71 | 0.00 | 2.90 | 6.87 | 6.87 |

PUMP/LOSS ELEMENT RESULTS

| NAME | FLOWRATE
gpm | INLET
HEAD
ft | OUTLET
HEAD
ft | PUMP
HEAD
ft | EFFIC-
ENCY
% | USEFUL
POWER
Hp | INCREMTL
COST
\$ | TOTAL
COST
Ş | #PUMPS
PARALLEL | #PUMPS
SERIES | NPSH
Avail.
ft | |
|--------------|-----------------|---------------------|----------------------|--------------------|---------------------|-----------------------|------------------------|--------------------|--------------------|------------------|----------------------|---|
| 100 | 994.51 | 0.00 | 145.20 | 145.2 | 75.00 | 36. | 2.0 | 4.3 | ** | ** | 33.2 | - |
| 0 | 3063.49 | 0.00 | 143.07 | 143.1 | 75.00 | 111. | 5.3 | 15.3 | * * | * * | 33.2 | |
| Warning P2K1 | 07:Device | | BFP is op | perating | out of | range. | | | | | | |
| BFP | 0.00 | 92.42 | 70.04 | -22.4 | 75.00 | Ο. | 0.0 | 0.0 | * * | * * | 125.6 | |

| NODE RESULTS
NODE NODE
NAME TITLE | EXTERNAL
DEMAND
gpm | HYDRAULIC
GRADE
ft | NODE
ELEVATION
ft | PRESSURE
HEAD
ft | NODE
PRESSURE
psi |
|---|---------------------------|--------------------------|-------------------------|------------------------|-------------------------|
| 2 | 0.00 | 165.03 | 62.00 | 103.03 | 44.65 |
| 4 | 0.00 | 164.39 | 65.00 | 99.39 | 43.07 |
| 6 | 58.00 | 160.98 | 65.00 | 95.98 | 41.59 |
| 8 | 0.00 | 160.42 | 66.00 | 94.42 | 40.92 |
| 12 | 0.00 | 204.24 | 56.00 | 148.24 | 64.24 |
| 14 | 0.00 | 162.72 | 63.00 | 99.72 | 43.21 |
| 16 | 1250.00 | 158.53 | 72.00 | 86.53 | 37.50 |
| 18 | 0.00 | 159.14 | 71.00 | 88.14 | 38.19 |
| 22 | 0.00 | 203.53 | 61.00 | 142.53 | 61.76 |
| 24 | 1500.00 | 158.43 | 60.00 | 98.43 | 42.65 |
| 100 | | 210.20 | 65.00 | 145.20 | 62.92 |
| 102 | 0.00 | 190.91 | 72.00 | 118.91 | 51.53 |
| 104 | 1250.00 | 154.72 | 62.00 | 92.72 | 40.18 |
| 0 | | 205.07 | 62.00 | 143.07 | 62.00 |
| O-BFP | 0.00 | 138.04 | 68.00 | 70.04 | 30.35 |
| HYD | 0.00 | 138.04 | 70.00 | 68.04 | 29.48 |
| I-BFP | 0.00 | 160.42 | 68.00 | 92.42 | 40.05 |
| | | | _ | | |

MAXIMUM AND MINIMUM VALUES PRESSURES JUNCTION MAXIMUM JUNCTION MINIMUM

| | | NUMBER | PRESSURES
psi | | NUMBER | PRESSURES
psi |
|-------------------|----------------------------|-----------------------------------|---|-----------------------|-----------------------------------|---|
| | | 12
100
0
22
102 | 64.24
62.92
62.00
61.76
51.53 | | HYD
O-BFP
16
18
I-BFP | 29.48
30.35
37.50
38.19
40.05 |
| | VEL | ОСІТ | IES | | | |
| | | PIPE
NUMBER | MAXIMUM
VELOCITY
(ft/s) | | PIPE
NUMBER | MINIMUM
VELOCITY
(ft/s) |
| | | 23
103
1
25
101 | 12.63
11.28
8.98
7.29
6.35 | | 11
105
21
15
5 | 1.54
2.90
3.16
3.47
4.50 |
| | H L + | ML/ | 1 0 0 0 | | | |
| | | PIPE
NUMBER | MAXIMUM
HL+ML/1000
(ft/ft) | | PIPE
NUMBER | MINIMUM
HL+ML/1000
(ft/ft) |
| | | 23
103
1
25
13 | 104.87
85.13
39.84
37.90
27.87 | | 11
21
15
105
5 | 0.95
3.59
6.86
6.87
11.11 |
| | H L | / 100 | 0 | | | |
| | | PIPE
NUMBER | MAXIMUM
HL/1000
(ft/ft) | | PIPE
NUMBER | MINIMUM
HL/1000
(ft/ft) |
| | | 23
103
1
25
13 | 104.87
85.13
39.84
37.90
27.87 | | 11
21
15
105
5 | 0.95
3.59
6.86
6.87
11.11 |
| SU | ММА | RY O | F INFLO | WS A | ND OUT | FLOWS |
| (+)
(-) | INFLO
OUTFL | WS INTO T
OWS FROM | HE SYSTEM FROM
THE SYSTEM IN | M SUPPLY
TO SUPPLY | NODES
NODES | |
| | NO
NAI | DE
ME
 | FLOWRATE
gpm | NODE
TITLE | | |
| | 100
0 | | 994.51
3063.49 | | | |
| NET
NET
NET | SYSTEI
SYSTEI
SYSTEI | M INFLOW
M OUTFLOW
M DEMAND | $ \begin{array}{rcl} = & 4058.00 \\ \pi = & 0.00 \\ = & 4058.00 \end{array} $ | | | |

***** HYDRAULIC ANALYSIS COMPLETED *****

EXHIBIT A

NODE AND PIPE DIAGRAM

