APPENDIX E **Air Quality Technical Memorandum**

CARLSBAD CLOVIS IRVINE LOS ANGELES PALM SPRINGS POINT RICHMOND RIVERSIDE ROSEVILLE SAN LUIS OBISPO

MEMORANDUM

DATE:	May 3, 2023
То:	Eric Lardy, City of Carlsbad, City Planner
FROM:	Amy Fischer, President Cara Cunningham, Associate
Subject:	Air Quality Technical Memorandum for the Three on Garfield Project in the City of Carlsbad, California

INTRODUCTION

LSA has prepared this Air Quality Technical Memorandum to evaluate the impacts associated with construction and operation of the proposed Three on Garfield Project (project) located at 2685, 2687, and 2689 Garfield Street in the City of Carlsbad (City), County of San Diego (County), California. This analysis follows the methodology identified by the San Diego County Air Pollution Control District (SDAPCD)¹. This analysis includes an assessment of criteria pollutant emissions, an assessment of carbon monoxide (CO) hot-spot impacts, and an assessment of the project's impact on sensitive receptors.

PROJECT LOCATION

The 0.16-acre project site is located at 2685, 2687, and 2689 Garfield Street in the City of Carlsbad (City), San Diego County, California. The existing project site is currently developed with an attached three-unit condominium building. A full-access driveway on Beech Avenue provides vehicular access to the project site. Regional access to the project site is provided by Interstate 5 (I-5) and State Route 78 (SR-78). Local access to the project site is provided by Carlsbad Boulevard. The project location is shown in Figure 1 (provided in Attachment A).

The project site is surrounded primarily by residential units and open space. The project site is bounded to the east by a City-owned park with a historical building, to the south by a vacant lot, and to the west and north by a mix of single- and multi-family residential units.

¹ San Diego County Air Pollution Control District (SDAPCD). CEQA. Website: https://www.sdapcd.org/content/sdapcd/planning/ceqa.html (accessed February 2023).

PROJECT DESCRIPTION

The proposed project would construct three attached condominium units to replace the existing condominium units on site. The proposed building would have a total of 5,118 square feet (sq ft). Two condominium units would contain two bedrooms while the third unit would have three bedrooms. The units would range in size from 1,701 sq ft to 1,713 sq ft. Each unit would include an attached two-car garage for a total of six parking spaces. In addition, one guest parking space would be provided along the building exterior on the north side of the site. Direct vehicular access to the proposed project would continue to be provided via a full-access driveway on Beech Avenue. Figure 2 illustrates the project site plan.

Landscape would be installed throughout the common areas and along the driveway and would consist of various native/drought tolerant trees, shrubs, and ground cover species. Total landscaped area would be approximately 3,086 sq ft. In addition, approximately 472 sq ft of rooftop area would be solar ready.

Construction would include demolition, site preparation, grading, and building construction activities. Construction of the proposed project is anticipated to commence in February 2025. The project would demolish approximately 4,800 sq ft of the existing building. Based on the preliminary grading plans, the project would require approximately 233 cubic yards of soil cut, 93 cubic yards of fill, 140 cubic yards of export, and 434 cubic yards of remedial grading. Demolition, grading, and building activities would involve the use of standard earthmoving equipment such as large excavators, cranes, and other related equipment.

EXISTING LAND USES IN THE PROJECT AREA

For the purposes of this analysis, sensitive receptors are areas of the population that have an increased sensitivity to air pollution or environmental contaminants. Sensitive receptor locations include residences, schools, daycare centers, hospitals, parks, and similar uses that are sensitive to air quality. Impacts on sensitive receptors are of particular concern because those receptors are the population most vulnerable to the effects of air pollution. The project site is surrounded primarily by residential and open space uses. Land uses surrounding the project site include residential uses to the north and west, vacant land to the south, a church to the southeast, and a City-owned park with a historical building and commercial uses to the east. The closest sensitive receptors to the project site include single-family and multi-family residential uses located immediately adjacent to the project site to the northwest and west.

ENVIRONMENTAL SETTING

Air quality is primarily a function of both local climate and local sources of air pollution and regional pollution transport. The amount of a given pollutant in the atmosphere is determined by the amount of the pollutant released and the atmosphere's ability to transport and dilute the pollutant. The major determinants of transport and dilution are wind, atmospheric stability, and terrain, and for photochemical pollutants, sunshine.

A region's topographic features have a direct correlation with air pollution flow and, therefore, are used to determine the boundary of air basins. The proposed project is located in the City of

Carlsbad, within the jurisdiction of the SDAPCD, which regulates air quality in the San Diego Air Basin (SDAB).

The SDAB experiences a persistent temperature inversion (increasing temperature with increasing altitude) as a result of the Pacific high. This inversion limits the vertical dispersion of air contaminants, holding them relatively near the ground. As the sun warms the ground and the lower air layer, the temperature of the lower air layer approaches the temperature of the base of the inversion (upper) layer until the inversion layer finally breaks, allowing vertical mixing with the lower layer. This phenomenon is observed in midafternoon to late afternoon on hot summer days, when the air appears to clear up suddenly. Winter inversions frequently break by midmorning.

Winds in the project area blow predominantly from the south-southwest, with relatively low velocities. Wind speeds in the project area average about 5 miles per hour. Summer wind speeds average slightly higher than winter wind speeds. Low average wind speeds, together with a persistent temperature inversion, limit the vertical dispersion of air pollutants throughout the SDAB. Strong, dry, north or northeasterly winds, known as Santa Ana winds, occur during the fall and winter months, dispersing air contaminants. The Santa Ana conditions tend to last for several days at a time.

The combination of stagnant wind conditions and low inversions produces the greatest pollutant concentrations. On days of no inversion or high wind speeds, ambient air pollutant concentrations are the lowest. During periods of low inversions and low wind speeds, air pollutants generated in urbanized areas are transported predominantly onshore into Riverside and San Bernardino Counties. In the winter, the greatest pollution problems are CO and nitrogen oxides (NO_X) because of extremely low inversions and air stagnation during the night and early morning hours. In the summer, the longer daylight hours and brighter sunshine combine to cause a reaction between hydrocarbons and NO_X to form photochemical smog. Smog is a general term for naturally occurring fog that has become mixed with smoke or pollution. In this context, it is better described as a form of air pollution produced by the photochemical reaction of sunlight with pollutants that have been released into the atmosphere, especially by automotive emissions.

Attainment Status

Both the State of California (State) and the federal government have established health-based Ambient Air Quality Standards (AAQS) for six criteria air pollutants: carbon monoxide (CO), ozone (O_3), nitrogen dioxide (NO_2), sulfur dioxide (SO_2), lead (Pb), and suspended particulate matter ($PM_{2.5}$ and PM_{10}). The SDAB is designated as nonattainment for O_3 for federal standards and nonattainment for O_3 , PM_{10} , and $PM_{2.5}$ for State standards.

Air quality monitoring stations are located throughout the nation and maintained by the local air districts and State air quality regulating agencies. Data collected at permanent monitoring stations are used by the United States Environmental Protection Agency (USEPA) to identify regions as "attainment" or "nonattainment" depending on whether the regions meet the requirements stated in the applicable National Air Quality Standards (NAAQS). Nonattainment areas are imposed with additional restrictions as required by the USEPA. In addition, different classifications of attainment, such as marginal, moderate, serious, severe, and extreme, are used to classify each air basin in the State on a pollutant-by-pollutant basis. The classifications are used as a foundation to create air

quality management strategies to improve air quality and comply with the NAAQS. Attainment statuses for each of the criteria pollutants for San Diego County are listed in Table A.

Pollutant	Federal	State
O ₃ 1 hour	Nonattainment	Nonattainment
O₃ 8 hour	Attainment ¹	Nonattainment
СО	Attainment	Attainment
PM ₁₀	Unclassifiable ²	Nonattainment
PM _{2.5}	Attainment	Nonattainment
NO ₂	Attainment	Attainment
SO ₂	Attainment	Attainment
Pb	Attainment	Attainment
Sulfates	No Federal Standard	Attainment
Hydrogen Sulfide	No Federal Standard	Unclassified
Visibility	No Federal Standard	Unclassified

Table A: Attainment Status of Criteria Pollutants in San Diego County

Source: Attainment Status (San Diego County Air Pollution Control District, 2021).

The federal 1-hour standard of 12 ppm was in effect from 1979 through June 15, 2005. The revoked standard is referenced here because it was employed for such a long period and because this benchmark is addressed in State Implementation Plans.

At the time of designation, if the available data do not support a designation of attainment or nonattainment, the area is designated as unclassifiable.

CO = carbon monoxide

NO₂ = nitrogen dioxide

Pb = lead

PM₁₀ = particulate matter less than 10 microns in diameter PM_{2.5} = particulate matter less than 2.5 microns in diameter ppm = parts per million

O₃ = ozone

SO₂ = sulfur dioxide

Air Quality Monitoring Results

Air quality monitoring stations are located throughout the nation and are maintained by the local air pollution control district and State air quality regulating agencies. The SDAPCD, together with the California Air Resources Board (CARB), maintains ambient air quality monitoring stations in the SDAB. The air quality monitoring station closest to the project area is the Camp Pendleton ambient air quality monitoring station in Oceanside. The air quality trends from this station are used to represent the ambient air quality in the project area. Ambient air quality in the project area from 2019 to 2021 is shown in Table B. CO, PM_{2.5}, PM₁₀, and SO₂ are not monitored at the Camp Pendleton station; therefore, Table B includes PM_{2.5}, PM₁₀, SO₂, and CO data from the 533 First Street monitoring station in El Cajon.² As indicated in the monitoring results, no violations of the federal PM₁₀ standard occurred during the 3-year period. Additionally, no violations of the State PM₁₀ standard occurred in 2019 or 2021, but no data was available for 2020. PM_{2.5} levels exceeded the federal standard 2 times in 2020 only. The State 1-hour O₃ standard was not exceeded in 2019, but no data was available for 2020 or 2021. The State 8-hour O₃ standard was exceeded 3 times only in 2020. The federal 8-hour O_3 standard was not exceeded during the three-year period. The CO, SO₂, and NO₂ standards were not exceeded.

² California Air Resources Board (CARB). 2019. iADAM: Top 4 Summary. Website: www.arb.ca.gov/adam/ topfour/topfour1.php (accessed February 2023).

Pollutant	Standard	2019	2020	2021
Carbon Monoxide (CO) ¹ – El Cajon				
Maximum 1-hour concentration (ppm)		1.3	1.5	1.2
Number of days exceeded:	State: >20 ppm	0	0	0
	Federal: >35 ppm	0	0	0
Maximum 8-hour concentration (ppm)		1.0	1.4	1.1
Number of days exceeded:	State: >9 ppm	0	0	0
	Federal: >9 ppm	0	0	0
Ozone (O ₃) ² – Camp Pendleton				
Maximum 1-hour concentration (ppm)		0.075	0.094	0.074
Number of days exceeded:	State: >0.09 ppm	0	ND	ND
Maximum 8-hour concentration (ppm)		0.064	0.074	0.059
Number of days exceeded:	State: >0.07 ppm	0	3	0
	Federal: >0.08 ppm	0	0	0
Coarse Particulates (PM ₁₀) ¹ – El Cajon				
Maximum 24-hour concentration (µg/m ³)		38.0	55.0	40.0
Number of days exceeded:	State: >50 µg/m ³	0	ND	0
	Federal: >150 μg/m ³	0	0	0
Annual arithmetic average concentration (µg	g/m³)	ND	ND	ND
Excooled for the year:	State: >20 µg/m ³	ND	ND	ND
Exceeded for the year.	Federal: >50 µg/m ³	ND	ND	ND
Fine Particulates (PM _{2.5}) ¹ – El Cajon				-
Maximum 24-hour concentration (µg/m ³)		25.7	41.6	31.5
Number of days exceeded:	Federal: >35 µg/m ³	0	2	0
Annual arithmetic average concentration (µg	g/m³)	ND	11.6	10.4
Exceeded for the year:	State: >12 µg/m ³	ND	No	No
	Federal: >12 µg/m ³	ND	0 0 0 0 .0 1.4 1.1 0 0 0 0 0 0 0 0 0 0 0 0 075 0.094 0.07 0 ND ND 064 0.074 0.05 0 3 0 0 0 0 8.0 55.0 40.4 0 ND 0 8.0 55.0 40.4 0 ND ND ND ND NO NO NO NO 0 2 0 0 2 0 0D NO NO 0053 0.058 0.050 0008 0.0017 0	No
Nitrogen Dioxide (NO ₂) ² – Camp Pendleton		<u>.</u>		•
Maximum 1-hour concentration (ppm)		0.053	0.058	0.059
Number of days exceeded:	State: >0.250 ppm	0	0	0
Annual arithmetic average concentration (pp	om)	0.005	0.006	0.006
Exceeded for the year:	Federal: >0.053 ppm	No	No	No
Sulfur Dioxide (SO ₂) ¹ – El Cajon				
Maximum 1-hour concentration (ppm)		0.0008	0.0017	0.0016
Number of days exceeded:	State: >0.25 ppm	0	0	0
Maximum 24-hour concentration (ppm)		0.0003	0.0004	0.0003
Number of days exceeded:	State: >0.04 ppm	0	0	0
	Federal: >0.14 ppm	0	0	0
Annual arithmetic average concentration (pp	om)	0.0001	0.0001	0.0001
Exceeded for the year:	Federal: >0.030 ppm	No	No	ND

Table B: Ambient Air Quality at Project Vicinity Monitoring Stations

Sources: Top 4 Summary (CARB 2023); Outdoor Air Quality Data: Monitor Values Report (USEPA 2023).

¹ Data taken at the 533 First Street ambient air quality monitoring station in El Cajon.

² Data taken at the ambient air quality monitoring station in Camp Pendleton.

 $\mu g/m^3$ = micrograms per cubic meter

CARB = California Air Resources Board

ND = No data. There were insufficient (or no) data to determine the value.

ppm = parts per million

USEPA = United States Environmental Protection Agency

REGULATORY SETTING

Applicable federal, State, regional, and local air quality regulations are discussed below.

Federal Regulations

The 1970 federal Clean Air Act (CAA) authorized the establishment of national health-based air quality standards and set deadlines for their attainment. The CAA Amendments of 1990 changed deadlines for attaining national standards as well as the remedial actions required for areas of the nation that exceed the standards. Under the CAA, State and local agencies in areas that exceed the national standards are required to develop State Implementation Plans (SIPs) to demonstrate how they will achieve the national standards by specified dates.

State Regulations

In 1988, the California Clean Air Act (CCAA) required that all air districts in the State endeavor to achieve and maintain California Ambient Air Quality Standards (CAAQS) for CO, O₃, SO₂, and NO₂ by the earliest practical date. The CCAA provides districts with the authority to regulate indirect sources and mandates that air quality districts focus particular attention on reducing emissions from transportation and area-wide emission sources. Each nonattainment district is required to adopt a plan to achieve a 5 percent annual reduction, averaged over consecutive 3-year periods, in district-wide emissions of each nonattainment pollutant or its precursors. A Clean Air Plan shows how a district would reduce emissions to achieve air quality standards. Generally, the State standards for these pollutants are more stringent than the national standards.

The CARB is the State's "clean air agency." The CARB's goals are to attain and maintain healthy air quality, protect the public from exposure to toxic air contaminants, and oversee compliance with air pollution rules and regulations.

Regional Regulations

San Diego County Air Pollution Control District. The SDAPCD has adopted air quality plans to improve air quality, protect public health, and protect the climate. The San Diego Regional Air Quality Strategy (RAQS) outlines SDAPCD plans and control measures designed to attain and maintain the State standards, while San Diego's portions of the SIP are designed to attain and maintain federal standards. The RAQS was initially adopted in 1991 and is updated on a triennial basis. The RAQS was updated in 1995, 1998, 2001, 2004, 2009, 2016, and most recently in December 2022. The RAQS does not currently address the CAAQS for PM_{2.5} and PM₁₀.

SDAPCD has also developed the SDAB input to the SIP, which is required under the CAA for areas that are out of attainment of air quality standards. Both the RAQS and SIP demonstrate the effectiveness of CARB measures (mainly for mobile sources) and SDAPCD plans and control measures (mainly for stationary and area-wide sources) for attaining the O₃ NAAQS. The SIP is also updated on a triennial basis. SDAPCD adopted its attainment plan and Reasonable Available Control Technology Demonstration for the 2008 8-hour O₃ NAAQS. In addition, the Measures to Reduce

Particulate Matter in San Diego County Report³ proposes measures to reduce particulate matter emissions and recommends measures for further detailed evaluation and, if appropriate, future rule development (or non-regulatory development, if applicable), adoption, and implementation in San Diego County, in order to attain particulate matter CAAQS.

The RAQS relies on information from the CARB and the San Diego Association of Governments (SANDAG), including mobile and area source emissions, as well as information regarding projected growth in the County, to project future emissions and then determine from that the strategies necessary for the reduction of emissions through regulatory controls. The CARB mobile source emission projections and SANDAG growth projections are based on population and vehicle trends and land use plans developed by the cities and by the County as part of the development of the County's General Plan. As such, projects that propose development that is consistent with the growth anticipated by the general plans would be consistent with the RAQS. In the event that a project would propose development that is less dense than anticipated by the County's General Plan, the project would likewise be consistent with the RAQS. If a project proposes development that is greater than that anticipated by the General Plan and SANDAG growth projections, the project might be in conflict with the RAQS and SIP, and might have a potentially significant impact on air quality.

The SIP relies on the same information from SANDAG to develop emission inventories and emission reduction strategies that are included in the attainment demonstration for the SDAB. The SIP also includes rules and regulations that have been adopted by the SDAPCD to control emissions from stationary sources. These SIP-approved rules may be used as a guideline to determine whether a project's emissions would have the potential to conflict with the SIP and thereby hinder attainment of the NAAQS for ozone.

SDAPCD Rules and Regulations. As stated above, the SDAPCD is responsible for planning, implementing, and enforcing NAAQS and CAAQS in the SDAB. The following rules and regulations apply to all sources within the jurisdiction of SDAPCD, and would apply to the proposed project:

- 1. *SDAPCD Regulation IV: Prohibitions; Rule 50: Visible Emissions.* Prohibits visible emissions from exceeding a determined visual threshold from being emitted, this rule applies to the discharge of any air contaminant other than uncombined water vapor.⁴
- 2. SDAPCD Regulation IV: Prohibitions; Rule 51: Nuisance. Prohibits the discharge, from any source, of such quantities of air contaminants or other materials that cause or have a tendency to cause

³ SDAPCD. 2005. Measures to Reduce Particulate Matter in San Diego County. Website: https://www. sdapcd.org/content/dam/sdc/apcd/PDF/Air%20Quality%20Planning/PM-Measures.pdf (accessed February 2023).

⁴ SDAPCD. 1997. *Rule 50: Visible Emissions*. Website: www.sdapcd.org/content/dam/sdc/apcd/PDF/ Rules_and_Regulations/Prohibitions/APCD_R50.pdf (accessed February 2023).

injury, detriment, nuisance, annoyance to people and/or the public, or damage to any business or property.⁵

- 3. SDAPCD Regulation IV: Prohibitions; Rule 55: Fugitive Dust. Regulates fugitive dust emissions from any commercial construction or demolition activity capable of generating fugitive dust emissions, including active operations, open storage piles, and inactive disturbed areas, as well as track-out and carry-out onto paved roads beyond a project site.⁶
- 4. SDAPCD Regulation IV: Prohibitions; Rule 67.0.1: Architectural Coatings. Requires manufacturers, distributors, and end users of architectural and industrial maintenance coatings to reduce volatile organic compound (VOC) emissions from the use of these coatings, primarily by placing limits on the VOC content of various coating categories.⁷

San Diego Association of Governments. The SANDAG adopted the San Diego Forward: The 2021 Federal Regional Transportation Plan (2021 Regional Plan), which serves as the long-term blueprint for the San Diego region that seeks to meet regulatory requirements, address traffic congestion, and create equal access to jobs, education, healthcare, and other community resources. The 2021 Regional Plan considers climate action planning, climate adaptation, curb management, electric vehicles, fix it first, housing, land use and regional growth, parking management, pricing, transportation demand management, transportation system management and operations, and vision zero.⁸

Local Regulations

City of Carlsbad General Plan. The City of Carlsbad General Plan addresses air quality in its Open Space, Conservation, and Recreation Element which contains goals and policies that work to protect air quality within the City and support efforts for enhanced regional air quality. The following policies related to air quality are presented in the Open Space, Conservation, and Recreation Element⁹ and are applicable to the proposed project:

 Policy 4-P.56 Ensure that construction and grading projects minimize short-term impacts to air quality.

⁵ SDAPCD. 1976. *Rule 51: Nuisance*. Website: www.sandiegocounty.gov/content/dam/sdc/apcd/ PDF/Rules_and_Regulations/Prohibitions/APCD_R50-1-51.pdf (accessed February 2023).

⁶ SDAPCD. 2009. *Rule 55: Fugitive Dust Control*. Website: www.sdapcd.org/content/dam/sdc/apcd/ PDF/Rules_and_Regulations/Prohibitions/APCD_R55.pdf (accessed February 2023).

⁷ SDAPCD. 2021. *Rule 67: Fugitive Dust Control*. Website: www.sdapcd.org/content/dam/sdc/apcd/ PDF/Rules_and_Regulations/Prohibitions/APCD_R67-0-1-2021.pdf (accessed February 2023).

⁸ San Diego Association of Governments. 2021. 2021 San Diego Regional Plan. Website: sdforward.com/ (accessed February 2023).

⁹ City of Carlsbad. 2015. Carlsbad General Plan. *Open Space, Conservation, and Recreation Element*. September 22. Website: https://www.carlsbadca.gov/home/showpublisheddocument/3424/ 637434861099030000 (accessed February 2023).

- Require grading projects to provide a storm water pollution prevention plan (SWPPP) in compliance with City requirements, which include standards for best management practices that control pollutants from dust generated by construction activities and those related to vehicle and equipment cleaning, fueling, and maintenance.
- Require grading projects to undertake measures to minimize mono-nitrogen oxides (NOx) emissions from vehicle and equipment operations.
- Monitor all construction to ensure that proper steps are implemented.

METHODOLOGY

Construction Emissions

Construction activities can generate a substantial amount of air pollution. Construction activities are considered temporary; however, short-term impacts can contribute to exceedances of air quality standards. Construction activities include demolition, site preparation, earthmoving, and general construction. The emissions generated from these common construction activities include: fugitive dust from soil disturbance; fuel combustion from mobile heavy-duty, diesel- and gasoline-powered equipment; portable auxiliary equipment; and worker commute trips.

The California Emissions Estimator Model version 2022.1 (CalEEMod) computer program was used to calculate emissions from on-site construction equipment and emissions from worker and vehicle trips to the site. As described above, the project would demolish approximately 4,800 sq ft of the existing building to construct three condominium units, which was included in CalEEMod. This analysis assumes that construction would begin in 2025. Based on the preliminary grading plans, the project would require approximately 233 cubic yards of soil cut, 93 cubic yards of fill, 140 cubic yards of export, and 434 cubic yards of remedial grading, which was included in CalEEMod. Demolition, grading, and building activities would involve the use of standard earthmoving equipment such as large excavators, cranes, and other related equipment. All other construction worker and truck trips and fleet activities) from CalEEMod were used. This analysis also assumes the use of Tier 2 construction equipment as allowed for under the CARB in-use off-road diesel fueled fleets regulation.

Operational Emissions

This air quality analysis includes estimating emissions associated with long-term operation of the project. Indirect emissions of criteria pollutants with regional impacts would be emitted by project-generated vehicle trips. In addition, localized air quality impacts (i.e., higher carbon monoxide concentrations or "hot-spots") near intersections or roadway segments in the project vicinity would also potentially occur due to project-generated vehicle trips.

Consistent with SDAPCD guidance for estimating emissions associated with land use development projects, the CalEEMod computer program was used to calculate the long-term operational emissions associated with the project. As discussed previously in the Project Description section, the proposed project would develop three condominium units and associated improvements. The

analysis was conducted using land use codes *Condo/Townhouse High Rise* and *Parking Lot*. In addition, since the proposed project would replace the existing three condominium units with three new condominium units, the proposed project would not generate new vehicle trips, which was assumed in CalEEMod.

THRESHOLDS OF SIGNIFICANCE

The *State CEQA Guidelines* indicate that a project would normally have a significant adverse air quality impact if project-generated pollutant emissions would do any of the following:

- Conflict with or obstruct implementation of the applicable air quality plan;
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project is nonattainment under applicable federal or State ambient air quality standards;
- Expose sensitive receptors to substantial pollutant concentrations; or
- Result in other emissions (such as those leading to odors) affecting a substantial number of people.

Appendix G of the *State CEQA Guidelines* indicates that, where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to determine whether a project would have a significant impact on air quality.

Regional Emissions Thresholds

The SDAPCD does not provide quantitative thresholds for determining the significance of construction or mobile source-related impacts. However, the district does specify Air Quality Impact Analysis (AQIA) trigger levels for new or modified stationary sources (SDAPCD Rules 20.2 and 20.3). If these incremental levels for stationary sources are exceeded, an AQIA must be performed for the proposed new or modified source. Although these trigger levels do not generally apply to mobile sources or general land development projects, for comparative purposes, these levels may be used to evaluate the increased emissions which would be discharged to the SDAB from proposed land development projects.

For CEQA purposes, the screening criteria can be used as numeric methods to demonstrate that the project's total emissions (e.g., stationary and fugitive emissions, as well as emissions from mobile sources) would not result in a significant impact to air quality. The hourly and yearly screening-level thresholds are most appropriately used in situations when temporary emissions like emergency generators or other stationary sources are proposed as a part of a project. The daily screening-level thresholds are most appropriately used for the standard construction and operational emissions. As such, this analysis will compare the proposed project's emissions to the daily screening-level thresholds in Table C below.

	Construction Phase	Operational Phase							
Air Pollutant	(lbs/day)	(lbs/hour)	(lbs/day)	(tons/year)					
VOC	75	-	75	13.7					
CO	550	100	550	100					
NO _x	250	25	250	40					
SO _x	250	25	250	40					
PM ₁₀	100	_	100	15					
PM _{2.5}	55	_	55	10					

Table C: SDAPCD Air Quality Significance Thresholds

Source: Regulation II: Permits; Rule 20.2: New Source Review—Non-Major Sources (San Diego County Air Pollution Control District, January 2016).

CO = carbon monoxide

lbs = pounds

NO_x = nitrogen oxides

PM_{2.5} = particulate matter less than 2.5 microns in size

PM₁₀ = particulate matter less than 10 microns in size SDAPCD = San Diego County Air Pollution Control District SO_x = sulfur oxides VOC = volatile organic compound

Local Microscale Concentration Standards

The significance of localized project impacts under CEQA depends on whether ambient CO levels in the vicinity of the project are above or below State and federal CO standards. Because ambient CO levels are below the standards throughout the SDAB, a project would be considered to have a significant CO impact if project emissions result in an exceedance of one or more of the 1-hour or 8-hour standards. The following are applicable local emission concentration standards for CO:

- California State 1-hour CO standard of 20 parts per million (ppm)
- California State 8-hour CO standard of 9 ppm

IMPACT ANALYSIS

This section identifies potential air quality impacts associated with implementation of the proposed project.

Consistency with Applicable Air Quality Plans

The SDAPCD is responsible for developing and implementing the clean air plans for attainment and maintenance of the AAQS in the SDAPCD specifically, the SIP and RAQS. The federal O₃ maintenance plan, which is part of the SIP, was adopted in 2012. The most recent O₃ attainment plan was adopted in 2016. The SIP includes a demonstration that current strategies and tactics will maintain acceptable air quality in the SDAB based on the NAAQS. The RAQS was initially adopted in 1991 and is updated on a triennial basis (most recently in 2022). The RAQS outlines SDAPCD plans and control measures designed to attain the State's air quality standards for O₃. The SIP and RAQS rely on information from CARB and SANDAG, including mobile and area source emissions, as well as information regarding projected growth in the County as a whole and the cities in the County, to project future emissions and determine the strategies necessary for the reduction of emissions through regulatory controls. CARB mobile source emission projections and SANDAG growth projections are based on population, vehicle trends, and land use plans developed by the County and the cities in the County as part of the development of their general plans.

As discussed above, projects that propose development that is consistent with the growth anticipated by the general plans would be consistent with the RAQS. In the event that a project would propose development that is less dense than anticipated by the General Plan, the project would likewise be consistent with the RAQS. If a project proposes development that is greater than that anticipated by the General Plan and SANDAG growth projections, the project might be in conflict with the RAQS and SIP, and might have a potentially significant impact on air quality.

The proposed project would replace the three existing condominium units with three new condominium units. The City's General Plan and Local Coastal Plan (LCP) designate the project site R-15 Residential (8–15 dwelling units per acre [du/ac]), while the property is zoned Multiple-Family Residential (R-3). Based on the size of the lot (0.16 acre) and the allowed density on the property's land use designation (R-15, or 8–15 du/ac), a maximum of two units are allowed on the property. However, approval of a Nonconforming Construction Permit would allow the continuation of the legally established use of three dwelling units on the property. As such, since the proposed project is replacing the existing condominium units with an equal number of units, the proposed project would not result in development in excess of that anticipated in the General Plan or increases in population/housing growth beyond those contemplated by SANDAG. As such, the proposed project would not increase the population, vehicle trips, or vehicle miles traveled beyond that anticipated in the RAQS and SIP. Because the proposed project activities and associated vehicle trips are anticipated in local air quality plans, the proposed project would be consistent at a regional level with the underlying growth forecasts in the RAQS and SIP.

Criteria Pollutant Analysis

The SDAB is currently designated nonattainment for O₃, PM₁₀, and PM_{2.5} standards. The SDAB nonattainment status is attributed to the region's development history. Past, present, and future development projects contribute to the region's adverse air quality impacts on a cumulative basis. By its very nature, air pollution is largely a cumulative impact. No single project is sufficient in size to, by itself, result in nonattainment of an ambient air quality standard. Instead, a project's individual emissions contribute to existing cumulatively significant adverse air quality impacts. If a project's contribution to the cumulative impact is considerable, then the project's impact on air quality would be considered significant.

In developing thresholds of significance for air pollutants, SDAPCD considered the emission levels for which a project's individual emissions would be cumulatively considerable. If a project exceeds the identified significance thresholds, its emissions would be cumulatively considerable, resulting in significant adverse air quality impacts to the region's existing air quality conditions. Therefore, additional analysis to assess cumulative impacts is not necessary. The following analysis assesses the potential project-level air quality impacts associated with construction and operation of the proposed project.

Construction Emissions. During construction, short-term degradation of air quality may occur due to the release of particulate matter emissions (i.e., fugitive dust) generated by grading, building construction, paving, and other activities. Emissions from construction equipment are also anticipated and would include CO, NO_x, VOC, directly emitted PM_{2.5} or PM₁₀, and toxic air contaminants such as diesel exhaust particulate matter.

Project construction activities would include demolition, grading, site preparation, building construction, architectural coating, and paving activities. Construction-related effects on air quality from the proposed project would be greatest during the site preparation phase due to the disturbance of soils. If not properly controlled, these activities would temporarily generate particulate emissions. Sources of fugitive dust would include disturbed soils at the construction site. Unless properly controlled, vehicles leaving the site would deposit dirt and mud on local streets, which could be an additional source of airborne dust after it dries. PM₁₀ emissions would vary from day to day, depending on the nature and magnitude of construction activity and local weather conditions. PM₁₀ emissions would depend on soil moisture, silt content of soil, wind speed, and amount of operating equipment. Larger dust particles would settle near the source, whereas fine particles would be dispersed over greater distances from the construction site.

Water or other soil stabilizers can be used to control dust, resulting in emission reductions of 50 percent or more. The SDAPCD has established Rule 55, Fugitive Dust Control, which would require the applicant to implement measures that would reduce the amount of particulate matter (PM) generated during the construction period.¹⁰

In addition to dust-related PM₁₀ emissions, heavy trucks and construction equipment powered by gasoline and diesel engines would generate CO, sulfur oxides (SO_x), NO_x, VOC, and some soot particulate (PM_{2.5} and PM₁₀) in exhaust emissions. If construction activities were to increase traffic congestion in the area, CO and other emissions from traffic would increase slightly while those vehicles idle in traffic. These emissions would be temporary in nature and limited to the immediate area surrounding the construction site.

Construction emissions were estimated for the project using CalEEMod and summarized in Table D. Attachment B provides CalEEMod output sheets.

Droject Construction	Maximum Pollutant Emissions (lbs/day)									
Project Construction	VOC	NOx	СО	SOx	PM ₁₀	PM _{2.5}				
Maximum (lbs/day)	1.1	17.4	11.7	<0.1	6.7	3.2				
SDAPCD Thresholds	75.0	250.0	550.0	250.0	100.0	55.0				
Exceeds?	No	No	No	No	No	No				

Table D: Project Construction Emissions

Source: Compiled by LSA (February 2023).

 $\mathsf{PM}_{2.5}$ = particulate matter less than 2.5 microns in size

PM₁₀ = particulate matter less than 10 microns in size SDAPCD = San Diego County Air Pollution Control District SO_x = sulfur oxides VOC = volatile organic compounds

The results shown in Table D indicate the proposed project would not exceed the significance criteria for daily VOC, NO_x , CO, SO_x , PM_{10} , or $PM_{2.5}$ emissions. Therefore, construction of the proposed project would not result in a cumulatively considerable net increase of any criteria

CO = carbon monoxide

lbs/day = pounds per day

NO_x = nitrogen oxides

¹⁰ SDAPCD. 2009. op. cit.

pollutant for which the project region is in nonattainment under an applicable federal or State AAQS.

Operational Air Quality Impacts. Long-term air pollutant emissions associated with operation of the proposed project include emissions from area, energy, and mobile sources.

PM₁₀ emissions result from running exhaust, tire and brake wear, and the entrainment of dust into the atmosphere from vehicles traveling on paved roadways. Entrainment of PM₁₀ occurs when vehicle tires pulverize small rocks and pavement and the vehicle wakes generate airborne dust. The contribution of tire and brake wear is small compared to the other PM emission processes. Gasoline-powered engines have small rates of particulate matter emissions compared with diesel-powered vehicles. As discussed above, the proposed project would not generate new vehicle trips; therefore, the proposed project would not result in mobile source emissions.

Energy-source emissions result from activities in buildings that use electricity and natural gas. The quantity of emissions is the product of usage intensity (i.e., the amount of electricity or natural gas) and the emission factor of the fuel source. The primary sources of energy demand for the proposed project would include building mechanical systems such as heating and air conditioning, lighting, and plug-in electronics, such as refrigerators or computers. Greater building or appliance efficiency reduces the amount of energy for a given activity and thus lowers the resultant emissions. The emission factor is determined by the fuel source, with cleaner energy sources, like renewable energy, producing fewer emissions than conventional sources.

Typically, area source emissions consist of direct sources of air emissions located at the project site, including architectural coatings and the use of landscape maintenance equipment. Area source emissions associated with the project would include emissions from the use of architectural coatings, consumer products, and landscaping equipment. This analysis assumes that the proposed project would not include any wood burning stoves or fireplaces.

Long-term operational emissions associated with the proposed project were calculated using CalEEMod. Table E provides the proposed project's estimated operational emissions. Attachment B provides CalEEMod output sheets.

The results shown in Table E indicate the proposed project would not exceed the significance criteria for daily VOC, NO_x, CO, SO_x, PM₁₀, or PM_{2.5} emissions. Therefore, operation of the proposed project would not result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in nonattainment under an applicable federal or State AAQS.

Emission Tuno		Pollutant Emissions (lbs/day)									
Emission Type	VOC	NOx	СО	SOx	PM10	PM _{2.5}					
Mobile Sources	0.0	0.0	0.0	0.0	0.0	0.0					
Area Sources	4.7	0.1	5.8	<0.1	0.8	0.8					
Energy Sources	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Total Project Emissions	4.7	0.1	5.8	<0.1	0.8	0.8					
SDAPCD Threshold	55.0	55.0	550.0	150.0	150.0	55.0					
Exceeds Threshold?	No	No	No	No	No	No					

Table E: Project Operational Emissions

Source: Compiled by LSA (February 2023)

Note: Some values may not appear to add correctly due to rounding.

CO = carbon monoxide

lbs/day = pounds per day

NO_x = nitrogen oxides

PM_{2.5} = particulate matter less than 2.5 microns in size

PM₁₀ = particulate matter less than 10 microns in size SDAPCD = San Diego County Air Pollution Control District SO_x = sulfur oxides VOC = volatile organic compounds

Long-Term Microscale (CO Hot Spot) Analysis. Vehicular trips associated with the proposed project would contribute to congestion at intersections and along roadway segments in the vicinity of the proposed project site. Localized air quality impacts would occur when emissions from vehicular traffic increase as a result of the proposed project. The primary mobile-source pollutant of local concern is CO, a direct function of vehicle idling time and, thus, of traffic flow conditions. CO transport is extremely limited; under normal meteorological conditions, it disperses rapidly with distance from the source. However, under certain extreme meteorological conditions, CO concentrations near a congested roadway or intersection may reach unhealthful levels, affecting local sensitive receptors (e.g., residents, schoolchildren, the elderly, and hospital patients).

Typically, high CO concentrations are associated with roadways or intersections operating at unacceptable levels of service or with extremely high traffic volumes. In areas with high ambient background CO concentrations, modeling is recommended to determine a project's effect on local CO levels.

An assessment of project-related impacts on localized ambient air quality requires that future ambient air quality levels be projected. Existing CO concentrations in the immediate project vicinity are not available. Ambient CO levels monitored at the El Cajon Monitoring Station located at 533 First Street (the closest station to the project site), showed a highest recorded 1-hour concentration of 1.5 ppm (the State standard is 20 ppm) and a highest 8-hour concentration of 1.4 ppm (the State standard is 9 ppm) from 2019 to 2021. The highest CO concentrations would normally occur during peak traffic hours; hence, CO impacts calculated under peak traffic conditions represent a worst-case analysis. Reduced speeds and vehicular congestion at intersections result in increased CO emissions.

The proposed project is not expected to generate new vehicle trips during operation. Therefore, CO concentrations are not expected to significantly increase as a result of the proposed project. Therefore, given the extremely low level of CO concentrations in the project area and the lack of traffic impacts at any intersections, project-related vehicles are not expected to result in CO concentrations exceeding the State or federal CO standards. No CO hot spots would occur, and the project would not result in any project-related impacts on CO concentrations.

Health Risk on Nearby Sensitive Receptors

Sensitive receptors are defined as people that have an increased sensitivity to air pollution or environmental contaminants. Sensitive receptor locations include schools, parks and playgrounds, daycare centers, nursing homes, hospitals, and residential dwelling units. The project site is surrounded primarily by residential land and open space uses. The closest sensitive receptors to the project site include single family and multi-family residential uses located immediately adjacent to the project site to the northwest and west.

Construction activities associated with the proposed project would generate airborne particulates and fugitive dust, as well as a small quantity of pollutants associated with the use of construction equipment (e.g., diesel-fueled vehicles and equipment) on a short-term basis. However, construction contractors would be required to implement measures to reduce or eliminate emissions by following SDAPCD Rule 55, Fugitive Dust Control, which would require the applicant to implement measures that would reduce the amount of PM generated during the construction period. In addition, project construction emissions would be well below SDAPCD significance thresholds. Once the project is constructed, the project would not be a source of substantial pollutant emissions. Therefore, sensitive receptors are not expected to be exposed to substantial pollutant concentrations during project construction and operation.

Odors

SDAPCD Rules 50, 51, and 55 require the project applicant to include implementation of standard control measures for fugitive dust and diesel equipment emissions. Additionally, operators of offroad vehicles (i.e., self-propelled diesel-fueled vehicles 25 horsepower and up that were not designed to be driven on road) are required to limit vehicle idling to five minutes or less; register and label vehicles in accordance with the CARB Diesel Off-Road Online Reporting System; restrict the inclusion of older vehicles into fleets; and retire, replace, or repower older engines or install Verified Diesel Emission Control Strategies (e.g., exhaust retrofits). Additionally, SDAPCD Rule 51 regarding nuisances states: "A person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause injury or damage to business or property."

During project construction, some odors may be present due to diesel exhaust. However, these odors would be temporary and limited to the construction period. In addition, the proposed project would be required to comply with SDAPCD nuisance and odor rules. The proposed project would not include any activities or operations that would generate objectionable odors and once operational, the project would not be a source of odors. Therefore, the proposed project would not result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

CONCLUSION

Based on the analysis presented above, construction and operation of the proposed project would not result in the generation of criteria air pollutants that would exceed SDAPCD thresholds and mitigation measures are not required. Compliance with SDAPCD Rule 55: Fugitive Dust Control would further reduce construction dust impacts. The project would also be consistent with the applicable air quality plans. The proposed project is not expected to produce significant emissions that would affect nearby sensitive receptors. The project would also not result in objectionable odors affecting a substantial number of people. Therefore, the proposed project's emissions would be less than significant.

Attachments: A: Figures:

Figure 1: Project Location Figure 2: Site Plan B: CalEEMod Output Files

ATTACHMENT A

FIGURES

Figure 1: Project Location Figure 2: Site Plan

J:\20230874\GIS\MXD\ProjectLocation_StreetMap.mxd (3/17/2023)

Project Location and Vicinity

LSA

0 14 28 FEET SOURCE: BGI Architecture

Three on Garfield Project Site Plan

I:\20230874\G\Site_Plan.ai (2/24/2023)

ATTACHMENT B

CALEEMOD OUTPUT FILES

P:\20230874 Three on Garfield\PRODUCTS\Technical Studies\Air Quality\Three on Garfield - AQ memo 050323.docx (05/03/23)

Three on Garfield Project Custom Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
 - 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2025) Unmitigated
 - 3.2. Demolition (2025) Mitigated

- 3.3. Site Preparation (2025) Unmitigated
- 3.4. Site Preparation (2025) Mitigated
- 3.5. Grading (2025) Unmitigated
- 3.6. Grading (2025) Mitigated
- 3.7. Building Construction (2025) Unmitigated
- 3.8. Building Construction (2025) Mitigated
- 3.9. Paving (2025) Unmitigated
- 3.10. Paving (2025) Mitigated
- 3.11. Architectural Coating (2025) Unmitigated
- 3.12. Architectural Coating (2025) Mitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.1.2. Mitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.2. Electricity Emissions By Land Use Mitigated

- 4.2.3. Natural Gas Emissions By Land Use Unmitigated
- 4.2.4. Natural Gas Emissions By Land Use Mitigated
- 4.3. Area Emissions by Source
 - 4.3.2. Unmitigated
 - 4.3.1. Mitigated
- 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
 - 4.4.1. Mitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
 - 4.5.1. Mitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.6.2. Mitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
 - 4.7.2. Mitigated

4.8. Stationary Emissions By Equipment Type

- 4.8.1. Unmitigated
- 4.8.2. Mitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
 - 4.9.2. Mitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated

5.2.2. Mitigated

- 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.3.2. Mitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.9.2. Mitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths

- 5.10.1.1. Unmitigated
- 5.10.1.2. Mitigated
- 5.10.2. Architectural Coatings
- 5.10.3. Landscape Equipment
- 5.10.4. Landscape Equipment Mitigated
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.11.2. Mitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.12.2. Mitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.13.2. Mitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.14.2. Mitigated

5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.15.2. Mitigated

5.16. Stationary Sources

- 5.16.1. Emergency Generators and Fire Pumps
- 5.16.2. Process Boilers

5.17. User Defined

- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated

5.18.2. Sequestration

- 5.18.2.1. Unmitigated
- 5.18.2.2. Mitigated

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Three on Garfield Project
Lead Agency	
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	1.90
Precipitation (days)	21.8
Location	2685 Garfield St, Carlsbad, CA 92008, USA
County	San Diego
City	Carlsbad
Air District	San Diego County APCD
Air Basin	San Diego
TAZ	6223
EDFZ	12
Electric Utility	San Diego Gas & Electric
Gas Utility	San Diego Gas & Electric

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Condo/Townhouse High Rise	3.00	Dwelling Unit	0.16	5,118	3,086	_	8.00	—
Parking Lot	1.00	Space	0.00	0.00	0.00	—	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title			
Construction	C-11	Limit Vehicle Speeds on Unpaved Roads			
Water	W-5	Design Water-Efficient Landscapes			

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	—	—
Unmit.	1.05	11.9	9.19	0.01	0.44	0.15	0.47	0.41	0.04	0.42	1,471	0.06	0.01	1,477
Mit.	1.05	11.9	9.19	0.01	0.44	0.15	0.47	0.41	0.04	0.42	1,471	0.06	0.01	1,477
% Reduced	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)		_	_	_	_	_								_
Unmit.	0.47	17.4	11.7	0.04	0.43	6.22	6.65	0.40	2.81	3.21	5,016	0.25	0.53	5,179
Mit.	0.47	17.4	11.7	0.04	0.43	6.22	6.65	0.40	2.81	3.21	5,016	0.25	0.53	5,179
% Reduced		—	—	—	—	—	—		—	—	—	—	—	—
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—	—		—
Unmit.	0.21	3.52	2.70	< 0.005	0.13	0.06	0.19	0.12	0.02	0.14	464	0.02	0.01	467
Mit.	0.21	3.52	2.70	< 0.005	0.13	0.06	0.19	0.12	0.02	0.14	464	0.02	0.01	467
% Reduced	—	—	—	—	—	—	—	—	—	—	—	—	_	—
Annual (Max)							_							_

Unmit.	0.04	0.64	0.49	< 0.005	0.02	0.01	0.03	0.02	< 0.005	0.03	76.8	< 0.005	< 0.005	77.4
Mit.	0.04	0.64	0.49	< 0.005	0.02	0.01	0.03	0.02	< 0.005	0.03	76.8	< 0.005	< 0.005	77.4
% Reduced	_	_	_	_	_	—	—	_	_	_	_	_	_	—

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	СО2Т	CH4	N2O	CO2e
Daily - Summer (Max)	-	-	_	_	_	—	_	_	_	_	—	—	—	_
2025	1.05	11.9	9.19	0.01	0.44	0.15	0.47	0.41	0.04	0.42	1,471	0.06	0.01	1,477
Daily - Winter (Max)	-	-	_	_	_				_	_				_
2025	0.47	17.4	11.7	0.04	0.43	6.22	6.65	0.40	2.81	3.21	5,016	0.25	0.53	5,179
Average Daily	_	—	—	—	—	—	—	—	—	—	—	—	—	—
2025	0.21	3.52	2.70	< 0.005	0.13	0.06	0.19	0.12	0.02	0.14	464	0.02	0.01	467
Annual	_	—	_	_	—	—	—	—	_	_	—	—	—	—
2025	0.04	0.64	0.49	< 0.005	0.02	0.01	0.03	0.02	< 0.005	0.03	76.8	< 0.005	< 0.005	77.4

2.3. Construction Emissions by Year, Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily - Summer (Max)				—	—	—		—		—	—	—	—	_
2025	1.05	11.9	9.19	0.01	0.44	0.15	0.47	0.41	0.04	0.42	1,471	0.06	0.01	1,477

Daily - Winter (Max)						_		_			_	_		_
2025	0.47	17.4	11.7	0.04	0.43	6.22	6.65	0.40	2.81	3.21	5,016	0.25	0.53	5,179
Average Daily		—	—	—	—	_	—	_	—		_	—		—
2025	0.21	3.52	2.70	< 0.005	0.13	0.06	0.19	0.12	0.02	0.14	464	0.02	0.01	467
Annual	_	—	_	_	_	_	_	_	—	_	_	_		—
2025	0.04	0.64	0.49	< 0.005	0.02	0.01	0.03	0.02	< 0.005	0.03	76.8	< 0.005	< 0.005	77.4

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	-	-	-	-	_	_	_	_	-	_	_		_	_
Unmit.	4.72	0.10	5.84	0.01	0.78	0.00	0.78	0.78	0.00	0.78	145	0.21	0.01	152
Mit.	4.72	0.10	5.84	0.01	0.78	0.00	0.78	0.78	0.00	0.78	145	0.21	0.01	152
% Reduced	_	_	-	-	_	_	_	_	_	_	< 0.5%	_	_	< 0.5%
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_		_
Unmit.	4.71	0.10	5.67	0.01	0.78	0.00	0.78	0.78	0.00	0.78	144	0.21	0.01	152
Mit.	4.71	0.10	5.67	0.01	0.78	0.00	0.78	0.78	0.00	0.78	144	0.21	0.01	151
% Reduced	—	—	—	—	—	—	—	—	—	—	< 0.5%	—	—	< 0.5%
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—	—		—
Unmit.	1.16	0.03	1.36	< 0.005	0.18	0.00	0.18	0.18	0.00	0.18	53.0	0.15	< 0.005	57.4
Mit.	1.16	0.03	1.36	< 0.005	0.18	0.00	0.18	0.18	0.00	0.18	52.7	0.15	< 0.005	57.2
% Reduced	—	—	—	—	—	—	—	—	—	—	< 0.5%	—	—	< 0.5%

Annual (Max)												—		—
Unmit.	0.21	< 0.005	0.25	< 0.005	0.03	0.00	0.03	0.03	0.00	0.03	8.77	0.03	< 0.005	9.51
Mit.	0.21	< 0.005	0.25	< 0.005	0.03	0.00	0.03	0.03	0.00	0.03	8.73	0.03	< 0.005	9.47
% Reduced	_	—	_	_	_	—	—	—	—	—	< 0.5%	< 0.5%		< 0.5%

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_				—	_
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Area	4.72	0.09	5.84	0.01	0.78	—	0.78	0.78	_	0.78	119	0.08	0.01	122
Energy	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	23.2	< 0.005	< 0.005	23.3
Water	—	—	—	—	—	—	—	—	—	—	1.84	0.02	< 0.005	2.51
Waste	—	—	—	—	—	—	—	—	—	—	1.14	0.11	0.00	4.00
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	0.04
Total	4.72	0.10	5.84	0.01	0.78	0.00	0.78	0.78	0.00	0.78	145	0.21	0.01	152
Daily, Winter (Max)	_	_											_	
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Area	4.71	0.09	5.67	0.01	0.78	—	0.78	0.78	—	0.78	118	0.08	0.01	122
Energy	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	23.2	< 0.005	< 0.005	23.3
Water	—	—	—	—	—	—	—	—	—	—	1.84	0.02	< 0.005	2.51
Waste	—	—	—	—	—	—	—	—	—	—	1.14	0.11	0.00	4.00
Refrig.	_	_	—	—	—	—	—	—	_	—	—	—	_	0.04
Total	4.71	0.10	5.67	0.01	0.78	0.00	0.78	0.78	0.00	0.78	144	0.21	0.01	152
Average Daily	-	_	_		_	_		_	_	_	_	_	_	
------------------	---------	---------	---------	---------	---------	------	---------	---------	------	---------	------	---------	---------	------
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Area	1.16	0.02	1.36	< 0.005	0.18	—	0.18	0.17	—	0.17	26.7	0.02	< 0.005	27.6
Energy	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	23.2	< 0.005	< 0.005	23.3
Water	—	—	—	—	—	—	—	—	—	—	1.84	0.02	< 0.005	2.51
Waste	—	—	—	—	-	—	—	—	—	—	1.14	0.11	0.00	4.00
Refrig.	—	—	—	—	-	—	—	—	—	—	—	_	_	0.04
Total	1.16	0.03	1.36	< 0.005	0.18	0.00	0.18	0.18	0.00	0.18	53.0	0.15	< 0.005	57.4
Annual	_	_	—	—	—	—	—	—	—	—	—	_	_	—
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Area	0.21	< 0.005	0.25	< 0.005	0.03	—	0.03	0.03	—	0.03	4.43	< 0.005	< 0.005	4.57
Energy	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	3.84	< 0.005	< 0.005	3.86
Water	_	_	_	-	-	_	-	_	_	_	0.31	< 0.005	< 0.005	0.42
Waste	_	_	_	_	-	_	-	_	_	_	0.19	0.02	0.00	0.66
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	0.01
Total	0.21	< 0.005	0.25	< 0.005	0.03	0.00	0.03	0.03	0.00	0.03	8.77	0.03	< 0.005	9.51

2.6. Operations Emissions by Sector, Mitigated

Sector	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_	_		_	_								—	
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Area	4.72	0.09	5.84	0.01	0.78	—	0.78	0.78	—	0.78	119	0.08	0.01	122
Energy	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	23.2	< 0.005	< 0.005	23.3
Water	_	_	_	_	_	_	_	_	_	_	1.63	0.02	< 0.005	2.30

Waste	—	—	—	—	—	—	_	—	—	—	1.14	0.11	0.00	4.00
Refrig.	—	—	—	—	—	—	—	—	—	—	_	_	_	0.04
Total	4.72	0.10	5.84	0.01	0.78	0.00	0.78	0.78	0.00	0.78	145	0.21	0.01	152
Daily, Winter (Max)	_				_	_	_			_	_	_		_
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Area	4.71	0.09	5.67	0.01	0.78	_	0.78	0.78	_	0.78	118	0.08	0.01	122
Energy	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	—	< 0.005	23.2	< 0.005	< 0.005	23.3
Water	_	—	_	—	—	_	_	—	—	_	1.63	0.02	< 0.005	2.30
Waste	—	—	—	—	—	_	_	—	—	—	1.14	0.11	0.00	4.00
Refrig.	—	—	—	—	—	—	_	—	—	—	_	—	_	0.04
Total	4.71	0.10	5.67	0.01	0.78	0.00	0.78	0.78	0.00	0.78	144	0.21	0.01	151
Average Daily	—	—		—	—	—	—	—	—	—	_	—	_	—
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Area	1.16	0.02	1.36	< 0.005	0.18	—	0.18	0.17	_	0.17	26.7	0.02	< 0.005	27.6
Energy	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	_	< 0.005	23.2	< 0.005	< 0.005	23.3
Water	—	—	_	—	—	—	_	_	_	_	1.63	0.02	< 0.005	2.30
Waste	—	—	_	—	—	—	_	_	_	—	1.14	0.11	0.00	4.00
Refrig.	—	—	_	—	—	—	_	_	_	—	_	—		0.04
Total	1.16	0.03	1.36	< 0.005	0.18	0.00	0.18	0.18	0.00	0.18	52.7	0.15	< 0.005	57.2
Annual	—	_	_	—	—	—	_	—	_	—	_	—		_
Mobile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Area	0.21	< 0.005	0.25	< 0.005	0.03	_	0.03	0.03	_	0.03	4.43	< 0.005	< 0.005	4.57
Energy	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	3.84	< 0.005	< 0.005	3.86
Water	_	_	_	_	_	_		_	_	_	0.27	< 0.005	< 0.005	0.38
Waste	_	_	_	_	_	_		_	_	_	0.19	0.02	0.00	0.66
Refrig.	_	_	_	_	_	_		_	_	_	_	_	_	0.01

Total	0.21	< 0.005	0.25	< 0.005	0.03	0.00	0.03	0.03	0.00	0.03	8.73	0.03	< 0.005	9.47

3. Construction Emissions Details

3.1. Demolition (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	—	_	—	_	—	_	—	—	—	_	—
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_		_	_
Daily, Winter (Max)		_	_	_	_	_	_	_	_	_				_
Off-Road Equipment	0.26	7.10	5.63	0.01	0.30	_	0.30	0.28	_	0.28	852	0.03	0.01	855
Demolition	—	—	—	—	—	0.47	0.47	—	0.07	0.07	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	_	—	_	—	—	—	_	—	—	—	—
Off-Road Equipment	0.01	0.19	0.15	< 0.005	0.01	-	0.01	0.01	-	0.01	23.3	< 0.005	< 0.005	23.4
Demolition	_	_	_	_	_	0.01	0.01	_	< 0.005	< 0.005	_	-	_	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.04	0.03	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	3.87	< 0.005	< 0.005	3.88
Demolition	—	—	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Summer (Max)		—									_		_	—
Daily, Winter (Max)											—		_	—
Worker	0.04	0.03	0.41	0.00	0.00	0.08	0.08	0.00	0.02	0.02	89.6	< 0.005	< 0.005	90.8
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	0.55	0.20	< 0.005	0.01	0.10	0.11	0.01	0.03	0.04	403	0.02	0.06	422
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—		—
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.48	< 0.005	< 0.005	2.51
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	11.0	< 0.005	< 0.005	11.6
Annual	—	—	_	—	_	_	_	_	_	—	—	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.41	< 0.005	< 0.005	0.42
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	1.83	< 0.005	< 0.005	1.92

3.2. Demolition (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)						—							_	
Daily, Winter (Max)						_							_	
Off-Road Equipment	0.26	7.10	5.63	0.01	0.30		0.30	0.28		0.28	852	0.03	0.01	855

—	—	—	_	-	0.47	0.47	—	0.07	0.07	_	—	—	_
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	—	—	—	—		—	—	—		—	_	—	—
0.01	0.19	0.15	< 0.005	0.01		0.01	0.01	—	0.01	23.3	< 0.005	< 0.005	23.4
_	-	-	—	—	0.01	0.01	-	< 0.005	< 0.005	-	—	—	-
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
—	—	—	—	—	—	—	—	—	—	—	_	—	—
< 0.005	0.04	0.03	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	3.87	< 0.005	< 0.005	3.88
_	_	_	_	-	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	-	-
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
—	—	—	—	—	—	—	—	—	—	—	_	—	—
_	-		-	_	_		_		_	-	_		_
_	-	_	-	_	_	_	_	-	-	-	_	_	—
0.04	0.03	0.41	0.00	0.00	0.08	0.08	0.00	0.02	0.02	89.6	< 0.005	< 0.005	90.8
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.01	0.55	0.20	< 0.005	0.01	0.10	0.11	0.01	0.03	0.04	403	0.02	0.06	422
—	_	—	—	—	—	—	—	—	_	—	—	—	_
< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.48	< 0.005	< 0.005	2.51
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	11.0	< 0.005	< 0.005	11.6
—	-	—	—	—	—	—	—	-	—	—	—	—	-
< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.41	< 0.005	< 0.005	0.42
		0.000.000.010.190.000.000.040.040.000.010.000.000.010.030.040.030.040.030.040.030.040.030.040.030.050.010.550.000.000.000.010.000.01	0.000.000.000.010.190.150.000.000.00< 0.005	0.000.000.000.000.010.190.150.000.000.000.000.000.000.000.000.00<	0.000.000.000.000.000.010.150.0050.010.000.000.000.000.000.000.000.000.000.000.000.010.010.000.000.000.010.010.000.000.000.010.000.010.010.010.010.010.010.010.010.010.000.010.010.010.010.010.010.010.010.010.000.010.010.010.010.000.010.010.000.010.000.010.010.000.010.000.010.010.000.010.0050.010.010.000.010.0050.010.000.000.010.0050.010.000.000.010.0050.0050.0050.000.0050.05	0.470.000.000.000.000.000.010.000.000.000.000.010.15<0.005	0.470.470.000.000.000.000.000.000.010.000.000.010.010.010.010.150.010.010.010.010.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.010.000.000.000.000.000.000.010.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.010.0010.010.010.010.010.010.01<	0.470.470.000.000.000.000.000.000.000.000.010.190.150.000.010.110.110.110.110.01<	0.470.470.47-0.070.000.000.000.000.000.000.000.000.000.111111111110.110.110.110.110.110.110.110.110.010.010.100.000.000.000.010.010.010.010.010.010.100.01	0.470.47-0.070.070.070.000.000.000.000.000.000.000.000.000.000.011111111111110.010.190.150.0050.110.110.110.1010.010.010.010.010.190.100.01 </td <td>00.470.47-0.47</td>	00.470.47-0.47	0.470.47-0.700.700.00 <td>00.010.0</td>	00.010.0

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	1.83	< 0.005	< 0.005	1.92

3.3. Site Preparation (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Daily, Summer (Max)														
Daily, Winter (Max)	_	_	_	_	_	_	_	_	—	_	_	_	_	_
Off-Road Equipment	0.25	7.05	5.99	0.01	0.24	—	0.24	0.23	—	0.23	859	0.03	0.01	862
Dust From Material Movement						0.53	0.53	—	0.06	0.06	—		_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.02	0.02	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	2.35	< 0.005	< 0.005	2.36
Dust From Material Movement						< 0.005	< 0.005	_	< 0.005	< 0.005	_		_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.39	< 0.005	< 0.005	0.39

Dust From Material Movement						< 0.005	< 0.005		< 0.005	< 0.005				
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_		_	_	_	_		_
Daily, Summer (Max)				_			_	_			_		_	
Daily, Winter (Max)							—	_			_		_	_
Worker	0.02	0.02	0.20	0.00	0.00	0.04	0.04	0.00	0.01	0.01	44.8	< 0.005	< 0.005	45.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—		—		—			—		
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.12	< 0.005	< 0.005	0.13
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.02	< 0.005	< 0.005	0.02
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.4. Site Preparation (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	_	_	—	_	_	—	—	_	—	—	—	—	—	—

Daily, Summer (Max)	_			_	_	_		_		_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.25	7.05	5.99	0.01	0.24		0.24	0.23	—	0.23	859	0.03	0.01	862
Dust From Material Movement	_			_	—	0.53	0.53	—	0.06	0.06		_		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	—	_	_	_	—	_	—	_	_	_	_	—
Off-Road Equipment	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	—	< 0.005	2.35	< 0.005	< 0.005	2.36
Dust From Material Movement	_		_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual		_	_	_	_	_	_	_	_					_
Off-Road Equipment	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005	0.39	< 0.005	< 0.005	0.39
Dust From Material Movement	_			_	-	< 0.005	< 0.005	—	< 0.005	< 0.005	—	_		-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	—	_
Daily, Summer (Max)	_		—	_	—	_		_		_	_	_		—
Daily, Winter (Max)	_			_	_	_		_		_		_		_

Worker	0.02	0.02	0.20	0.00	0.00	0.04	0.04	0.00	0.01	0.01	44.8	< 0.005	< 0.005	45.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.12	< 0.005	< 0.005	0.13
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	_	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.02	< 0.005	< 0.005	0.02
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Grading (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)													—	
Daily, Winter (Max)													—	
Off-Road Equipment	0.38	13.0	9.79	0.02	0.37	—	0.37	0.34	—	0.34	1,714	0.07	0.01	1,720
Dust From Material Movement						5.33	5.33		2.57	2.57			_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily		_	_	_	_				_			_	_	—
Off-Road Equipment	< 0.005	0.07	0.05	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	9.39	< 0.005	< 0.005	9.42
Dust From Material Movement	_	_	_			0.03	0.03	_	0.01	0.01		—		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	—	—	—	—	—	—	—	—	—		—
Off-Road Equipment	< 0.005	0.01	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	1.55	< 0.005	< 0.005	1.56
Dust From Material Movement	_	_	_			0.01	0.01		< 0.005	< 0.005		_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	—	—	—	_	—	—	—	—	—		—
Daily, Summer (Max)	_	_	_					—				—	_	_
Daily, Winter (Max)	_	_	_									_	_	_
Worker	0.03	0.03	0.30	0.00	0.00	0.06	0.06	0.00	0.01	0.01	67.2	< 0.005	< 0.005	68.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.07	4.39	1.60	0.02	0.06	0.83	0.89	0.06	0.23	0.29	3,235	0.18	0.51	3,391
Average Daily	—	—	_	—	—	—			—	—		—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.37	< 0.005	< 0.005	0.38
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	17.7	< 0.005	< 0.005	18.6
Annual	_	_	_	_	_	_	_	_	—	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.06	< 0.005	< 0.005	0.06

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	2.93	< 0.005	< 0.005	3.08

3.6. Grading (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	_	—	_	_	_	_	_	_	—	—	_	—	—	_
Daily, Summer (Max)														—
Daily, Winter (Max)														_
Off-Road Equipment	0.38	13.0	9.79	0.02	0.37	—	0.37	0.34	—	0.34	1,714	0.07	0.01	1,720
Dust From Material Movement						5.33	5.33		2.57	2.57				_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—		—	—	—		—	—	—	—	—		—
Off-Road Equipment	< 0.005	0.07	0.05	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	9.39	< 0.005	< 0.005	9.42
Dust From Material Movement						0.03	0.03		0.01	0.01				—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.01	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	1.55	< 0.005	< 0.005	1.56

Dust From Material Movement						0.01	0.01		< 0.005	< 0.005				
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_		_	_	_	_	_	_
Daily, Summer (Max)		_		_			_	_					_	_
Daily, Winter (Max)								_					_	_
Worker	0.03	0.03	0.30	0.00	0.00	0.06	0.06	0.00	0.01	0.01	67.2	< 0.005	< 0.005	68.1
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.07	4.39	1.60	0.02	0.06	0.83	0.89	0.06	0.23	0.29	3,235	0.18	0.51	3,391
Average Daily	—	—	—	—			—	—	—				—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.37	< 0.005	< 0.005	0.38
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	17.7	< 0.005	< 0.005	18.6
Annual	_	—	_	—	_	_	_	_	—	_	_	_	—	_
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.06	< 0.005	< 0.005	0.06
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	2.93	< 0.005	< 0.005	3.08

3.7. Building Construction (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)		_	_	_	_	_	_		_	_	_	_		
Off-Road Equipment	0.34	10.8	8.10	0.01	0.38	—	0.38	0.35	-	0.35	1,305	0.05	0.01	1,309
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	_	_	—		_		_	_	_			
Off-Road Equipment	0.34	10.8	8.10	0.01	0.38	—	0.38	0.35	—	0.35	1,305	0.05	0.01	1,309
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—		
Off-Road Equipment	0.09	2.97	2.22	< 0.005	0.10	—	0.10	0.10	-	0.10	357	0.01	< 0.005	359
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	-	_	_	_
Off-Road Equipment	0.02	0.54	0.41	< 0.005	0.02	_	0.02	0.02	-	0.02	59.2	< 0.005	< 0.005	59.4
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	-	-	_	_	_
Daily, Summer (Max)		_	_	_	_		_		_					
Worker	0.01	0.01	0.10	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	20.5	< 0.005	< 0.005	20.8
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	8.03	< 0.005	< 0.005	8.39
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	_	_	_	—			_			_		
Worker	0.01	0.01	0.09	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	19.4	< 0.005	< 0.005	19.6

Vendor	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	8.03	< 0.005	< 0.005	8.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	_	—	—	_	_	—	—	_	_	—	—	—	—
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	5.35	< 0.005	< 0.005	5.43
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	2.20	< 0.005	< 0.005	2.30
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.89	< 0.005	< 0.005	0.90
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.36	< 0.005	< 0.005	0.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.8. Building Construction (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	_	_
Daily, Summer (Max)														
Off-Road Equipment	0.34	10.8	8.10	0.01	0.38	—	0.38	0.35	—	0.35	1,305	0.05	0.01	1,309
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)														
Off-Road Equipment	0.34	10.8	8.10	0.01	0.38	—	0.38	0.35		0.35	1,305	0.05	0.01	1,309
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	_	—	—	—	_	—	—		—	—	—		

Off-Road Equipment	0.09	2.97	2.22	< 0.005	0.10	_	0.10	0.10	_	0.10	357	0.01	< 0.005	359
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.02	0.54	0.41	< 0.005	0.02	—	0.02	0.02	—	0.02	59.2	< 0.005	< 0.005	59.4
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_											_	
Worker	0.01	0.01	0.10	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	20.5	< 0.005	< 0.005	20.8
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	8.03	< 0.005	< 0.005	8.39
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-			_	_		_	_				_	
Worker	0.01	0.01	0.09	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	19.4	< 0.005	< 0.005	19.6
Vendor	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	8.03	< 0.005	< 0.005	8.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—		—	—	—	—		—
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	5.35	< 0.005	< 0.005	5.43
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	2.20	< 0.005	< 0.005	2.30
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	—	—	—	—	_		—	_	_	_		_
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.89	< 0.005	< 0.005	0.90
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.36	< 0.005	< 0.005	0.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)								—					_	
Off-Road Equipment	0.22	5.75	4.58	0.01	0.25	—	0.25	0.24	—	0.24	823	0.03	0.01	826
Paving	0.00	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)													_	
Average Daily	—	_	—	—	—	—	—	—	—		—	—	—	
Off-Road Equipment	< 0.005	0.08	0.06	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	11.3	< 0.005	< 0.005	11.3
Paving	0.00	_	—	—	—	—	—	_	_	_	_	_	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	—	_	_	_	—	_	—	_
Off-Road Equipment	< 0.005	0.01	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	1.87	< 0.005	< 0.005	1.87
Paving	0.00	_	—	—	—	—	—	_	_	_	_	_	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	—	—	—	—	—	—	_	_	_	—	—	—	_
Daily, Summer (Max)								_					_	
Worker	0.07	0.05	0.81	0.00	0.00	0.15	0.15	0.00	0.03	0.03	166	0.01	0.01	169
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)														
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.17	< 0.005	< 0.005	2.20
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	_	—	—	_	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.36	< 0.005	< 0.005	0.36
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.10. Paving (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	—	_	—	_	_	_	—	—	_	—	_	_	—	—
Daily, Summer (Max)				_	_	_					_			
Off-Road Equipment	0.22	5.75	4.58	0.01	0.25	—	0.25	0.24	—	0.24	823	0.03	0.01	826
Paving	0.00	—	—	_	_	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)				_	_									
Average Daily	_	—	_	_	_	_	_	—	_	—	_	_	—	

Off-Road Equipment	< 0.005	0.08	0.06	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	11.3	< 0.005	< 0.005	11.3
Paving	0.00	—	—	—	—	—	—	—	—	—	—	_	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.01	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	1.87	< 0.005	< 0.005	1.87
Paving	0.00	—	_	_	—	—	—	_	—	—	—	—	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)													_	
Worker	0.07	0.05	0.81	0.00	0.00	0.15	0.15	0.00	0.03	0.03	166	0.01	0.01	169
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_		_	_	_			_	
Average Daily		—	—	—	—	—	—		—	—	—	—		—
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	2.17	< 0.005	< 0.005	2.20
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	—	_	—	—	—	—	_	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.36	< 0.005	< 0.005	0.36
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2025) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	_	_	_	_		_	_	_	_	_	_	_		
Off-Road Equipment	0.05	1.09	0.96	< 0.005	0.07	_	0.07	0.06	_	0.06	134	0.01	< 0.005	134
Architectura I Coatings	0.64													
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)														
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—		—
Off-Road Equipment	0.01	0.15	0.13	< 0.005	0.01	—	0.01	0.01	_	0.01	18.3	< 0.005	< 0.005	18.4
Architectura I Coatings	0.09													
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	-	—	-	—	—	—	_	_
Off-Road Equipment	< 0.005	0.03	0.02	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	3.03	< 0.005	< 0.005	3.04
Architectura I Coatings	0.02	_					_		_					—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_			_		_		_				_	_

Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	4.10	< 0.005	< 0.005	4.16
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_							_				_	
Average Daily	—	—	—	—	—	—	—	—	—		—		_	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.53	< 0.005	< 0.005	0.54
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	_	—	_	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.09	< 0.005	< 0.005	0.09
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Architectural Coating (2025) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	СО2Т	CH4	N2O	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)								_		—		—	_	_
Off-Road Equipment	0.05	1.09	0.96	< 0.005	0.07	—	0.07	0.06	—	0.06	134	0.01	< 0.005	134
Architectura I Coatings	0.64							_		_		—		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	_		_	—	_	_			_	_	—	_	_
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	_	—
Off-Road Equipment	0.01	0.15	0.13	< 0.005	0.01	_	0.01	0.01	-	0.01	18.3	< 0.005	< 0.005	18.4
Architectura I Coatings	0.09	-			_				-			_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	< 0.005	0.03	0.02	< 0.005	< 0.005	—	< 0.005	< 0.005		< 0.005	3.03	< 0.005	< 0.005	3.04
Architectura I Coatings	0.02	-							_			—	-	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		-		_			_		-		_	-	-	_
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	4.10	< 0.005	< 0.005	4.16
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-		_		_	_		-	_	_	_	-	—
Average Daily	—	—	—	—	-	—	—	—	—	—	-	—	-	—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.53	< 0.005	< 0.005	0.54
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Annual	_	_	_	_	_	_	_		_		_	—		—
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	0.09	< 0.005	< 0.005	0.09
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	_	—			—
Condo/Tow nhouse High Rise	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	_	_	_		_	_	_					_
Condo/Tow nhouse High Rise	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	—

Condo/Tow nhouse High Rise	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.1.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)		—	_		_	_	_		_	_	_	_	_	—
Condo/Tow nhouse High Rise	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)														
Condo/Tow nhouse High Rise	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual		—	—	—	—	—	—	—	—	—	—	—	_	—
Condo/Tow nhouse High Rise	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	—	—	_	_	—	—	—	—	_	_	—	—	_	_
Condo/Tow nhouse High Rise	_	_				_	_				16.4	< 0.005	< 0.005	16.5
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00
Total	_	_	_	_	-	_	_	-	_	_	16.4	< 0.005	< 0.005	16.5
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_		_	_	_	
Condo/Tow nhouse High Rise	_	_	_	_	_	_	_	_	_	_	16.4	< 0.005	< 0.005	16.5
Parking Lot	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	16.4	< 0.005	< 0.005	16.5
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Condo/Tow nhouse High Rise	—	—			_	—	—	_			2.72	< 0.005	< 0.005	2.73
Parking Lot	_	_	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	2.72	< 0.005	< 0.005	2.73

4.2.2. Electricity Emissions By Land Use - Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e

Daily, Summer (Max)	—	—	—	—	—						_			
Condo/Tow nhouse High Rise			_		_		_			_	16.4	< 0.005	< 0.005	16.5
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00
Total	—	—	—	—	—	—	—	—	—	—	16.4	< 0.005	< 0.005	16.5
Daily, Winter (Max)							—			—	—			
Condo/Tow nhouse High Rise		_					_			_	16.4	< 0.005	< 0.005	16.5
Parking Lot	—	_	—	—	_	_	—	_	_	—	0.00	0.00	0.00	0.00
Total	—	—	—	—	—	_	—	_	_	—	16.4	< 0.005	< 0.005	16.5
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Condo/Tow nhouse High Rise		_		_			_			_	2.72	< 0.005	< 0.005	2.73
Parking Lot	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	2.72	< 0.005	< 0.005	2.73

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)										_			—	—
Condo/Tow nhouse High Rise	< 0.005	0.01	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	6.81	< 0.005	< 0.005	6.82

Parking Lot	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00
Total	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	6.81	< 0.005	< 0.005	6.82
Daily, Winter (Max)		_			_									
Condo/Tow nhouse High Rise	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	6.81	< 0.005	< 0.005	6.82
Parking Lot	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00
Total	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	6.81	< 0.005	< 0.005	6.82
Annual	_	—	—	—	—	—	—	—	—	—	—	—		—
Condo/Tow nhouse High Rise	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005	1.13	< 0.005	< 0.005	1.13
Parking Lot	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00
Total	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	1.13	< 0.005	< 0.005	1.13

4.2.4. Natural Gas Emissions By Land Use - Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	—	—	—		—	—			_	_	_		—	—
Condo/Tow nhouse High Rise	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	6.81	< 0.005	< 0.005	6.82
Parking Lot	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00
Total	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	6.81	< 0.005	< 0.005	6.82
Daily, Winter (Max)		_						_			_		—	—

Condo/Tow nhouse	< 0.005	0.01	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	6.81	< 0.005	< 0.005	6.82
Parking Lot	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00
Total	< 0.005	0.01	< 0.005	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	6.81	< 0.005	< 0.005	6.82
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Condo/Tow nhouse High Rise	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005	< 0.005		< 0.005	1.13	< 0.005	< 0.005	1.13
Parking Lot	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00
Total	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	1.13	< 0.005	< 0.005	1.13

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)		_	—	—	_		—	_						
Hearths	4.59	0.09	5.67	0.01	0.78	—	0.78	0.78	—	0.78	118	0.08	0.01	122
Consumer Products	0.11	_	—	—	—	—	—	—	—	—	—	—	—	—
Architectura I Coatings	0.01	_												
Landscape Equipment	0.02	< 0.005	0.17	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.46	< 0.005	< 0.005	0.47
Total	4.72	0.09	5.84	0.01	0.78	—	0.78	0.78	—	0.78	119	0.08	0.01	122
Daily, Winter (Max)		_	_	_	_		_	_						
Hearths	4.59	0.09	5.67	0.01	0.78	—	0.78	0.78	—	0.78	118	0.08	0.01	122

Consumer Products	0.11	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectura I Coatings	0.01										_		_	_
Total	4.71	0.09	5.67	0.01	0.78	—	0.78	0.78	—	0.78	118	0.08	0.01	122
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hearths	0.19	< 0.005	0.23	< 0.005	0.03	—	0.03	0.03	—	0.03	4.39	< 0.005	< 0.005	4.53
Consumer Products	0.02	—					—	—	—	—	—	—	—	—
Architectura I Coatings	< 0.005	_	_						_	_	_	_	_	_
Landscape Equipment	< 0.005	< 0.005	0.02	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.04	< 0.005	< 0.005	0.04
Total	0.21	< 0.005	0.25	< 0.005	0.03	_	0.03	0.03		0.03	4.43	< 0.005	< 0.005	4.57

4.3.1. Mitigated

Source	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	_		_	—	_	_		_	_	—	—	—	—	—
Hearths	4.59	0.09	5.67	0.01	0.78	—	0.78	0.78	—	0.78	118	0.08	0.01	122
Consumer Products	0.11			—									—	—
Architectura I Coatings	0.01												—	—
Landscape Equipment	0.02	< 0.005	0.17	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	0.46	< 0.005	< 0.005	0.47
Total	4.72	0.09	5.84	0.01	0.78	_	0.78	0.78	_	0.78	119	0.08	0.01	122

Daily, Winter (Max)			_						_		_	_		_
Hearths	4.59	0.09	5.67	0.01	0.78	_	0.78	0.78	—	0.78	118	0.08	0.01	122
Consumer Products	0.11	—	—	—	—	—	—	_	—	—	—		—	—
Architectura I Coatings	0.01		—								—	_		_
Total	4.71	0.09	5.67	0.01	0.78	—	0.78	0.78	—	0.78	118	0.08	0.01	122
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hearths	0.19	< 0.005	0.23	< 0.005	0.03	_	0.03	0.03	—	0.03	4.39	< 0.005	< 0.005	4.53
Consumer Products	0.02	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectura I Coatings	< 0.005		_								_	_		_
Landscape Equipment	< 0.005	< 0.005	0.02	< 0.005	< 0.005		< 0.005	< 0.005	_	< 0.005	0.04	< 0.005	< 0.005	0.04
Total	0.21	< 0.005	0.25	< 0.005	0.03	_	0.03	0.03	_	0.03	4.43	< 0.005	< 0.005	4.57

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)								—		—	—	—	—	_
Condo/Tow nhouse High Rise		_									1.84	0.02	< 0.005	2.51

Parking Lot	—	—	—	—	—	—	—	—	—	_	0.00	0.00	0.00	0.00
Total	—	—	—	—	—	—	—	—	—	—	1.84	0.02	< 0.005	2.51
Daily, Winter (Max)							_				—		_	
Condo/Tow nhouse High Rise		_			—		_		_		1.84	0.02	< 0.005	2.51
Parking Lot	—	_	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00
Total	—	—	—	—	—	—	—	—	—	—	1.84	0.02	< 0.005	2.51
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Condo/Tow nhouse High Rise							_				0.31	< 0.005	< 0.005	0.42
Parking Lot	—	_	_	_	—	—	—	—	—	—	0.00	0.00	0.00	0.00
Total	—	—	—	—	—	_	—	_	—	—	0.31	< 0.005	< 0.005	0.42

4.4.1. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)		—							_	_	_	_	_	—
Condo/Tow nhouse High Rise	_	_	_	_	_	_	_	_	_	_	1.63	0.02	< 0.005	2.30
Parking Lot	—	—	—	—	—	—	—	—	_	—	0.00	0.00	0.00	0.00
Total	—	—	—	—	—	—	—	—	—	—	1.63	0.02	< 0.005	2.30
Daily, Winter (Max)	_													

Condo/Tow nhouse	—	—	—	—	—	—	—		—	—	1.63	0.02	< 0.005	2.30
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00
Total	—	—	—	—	—	—	—	—	—	—	1.63	0.02	< 0.005	2.30
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Condo/Tow nhouse High Rise											0.27	< 0.005	< 0.005	0.38
Parking Lot	_	_	_	_	—	—	_	_	_	_	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_		_	_	0.27	< 0.005	< 0.005	0.38

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	—	—			_	—	—							
Condo/Tow nhouse High Rise		_			-	_	_				1.14	0.11	0.00	4.00
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00
Total	—	-	_	_	-	-	-	_	_	—	1.14	0.11	0.00	4.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_		_	_	_	_	_
Condo/Tow nhouse High Rise					_	_	_				1.14	0.11	0.00	4.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_		_	_	1.14	0.11	0.00	4.00

Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Condo/Tow nhouse High Rise	_			_				_		_	0.19	0.02	0.00	0.66
Parking Lot	—	—	_	—	_	—	—	—	_	—	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	—	_	_	—	0.19	0.02	0.00	0.66

4.5.1. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	—	_		_	—	—	_	_		_	_	_	_	_
Condo/Tow nhouse High Rise		_				_					1.14	0.11	0.00	4.00
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00
Total	—	—	—	—	—	—	—	—	—	—	1.14	0.11	0.00	4.00
Daily, Winter (Max)		_				_								
Condo/Tow nhouse High Rise		_									1.14	0.11	0.00	4.00
Parking Lot	—	_	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00
Total	—	_	—	—	—	—	—	—	—	—	1.14	0.11	0.00	4.00
Annual	—	_	—	—	—	—	—	—	—	—	—	—	—	—
Condo/Tow nhouse High Rise		_			_	_					0.19	0.02	0.00	0.66
Parking Lot	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00
Total	_	_	_	_	_	_	_	_	_	_	0.19	0.02	0.00	0.66

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	—	_			_	—	_							
Condo/Tow nhouse High Rise		_												0.04
Total	—	—	—	—	—	—	—	_	—	_	—	—	_	0.04
Daily, Winter (Max)		_												
Condo/Tow nhouse High Rise		_												0.04
Total	—	_	—	—	—	—	—	_	—	_	—	—	_	0.04
Annual	—	_	—	—	—	—	—	_	—	_	—	—	_	_
Condo/Tow nhouse High Rise	_	_			_	_	_							0.01
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	0.01

4.6.2. Mitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)							_	_						

Condo/Tow High Rise	—	—	—						—	—	—		—	0.04
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	0.04
Daily, Winter (Max)	—		—	—			—			_	_		_	_
Condo/Tow nhouse High Rise	_		_	_			_			_	_		_	0.04
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	0.04
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Condo/Tow nhouse High Rise	_		_	_			_				_		_	0.01
Total		_			_	_	_		_			_		0.01

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipment Type	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)														
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)														
Total	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_		_	_		_

4.7.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)												—		_
Total	—	—	—	—	—	—	—	—	—	—	_	—	_	—
Daily, Winter (Max)										_		_	_	_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	—	_	_
Total	_	—	_	_	—	_	—	_	—	_	_	—	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipment Type	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)														
Total	—	_	—	—	—	—	—	—	—	—	—	—	_	—
Daily, Winter (Max)					_			_						
Total	—	_	—	—	—	—	—	—	—	—	-	—	_	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8.2. Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)												—	_	—
Total	—	—	—	—	—	—	—	—	—	—	_	—	_	—
Daily, Winter (Max)													_	_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	_	_	—	_	_	_	_	_	_	_	_	_	—
Total	_	—	_	—	—	_	—	_	—	_	_	—	_	—

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipment Type	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)														
Total	—	—	—	—	—	—	—	—	—	—	—	—	_	—
Daily, Winter (Max)	_													
Total	—	—	—	—	—	—	—	—	—	_	—	_	_	—
Annual	_	_	_	_	_	_	_	_	_	_		_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4.9.2. Mitigated

Equipment Type	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)		—	_	_	—	—	_	—	_	_	_	—	_	_
Total	—	—	—	—	—	—	—	—	—	_		—	_	—
Daily, Winter (Max)		_	_	_	_	_	_	_	_	_	_	_	_	_
Total	—	—	—	—	—	—	—	—	—	—	—	—	_	—
Annual	_	_	_	—	_	_	_	_	—	_	_	_	_	_
Total	_	—	_	—	_	_	_	—	—	—		—	—	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetation	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)			—	—		—	—	—			—		—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)											_		_	_
Total	—	—	_	_	—	_	_	_	_	_	—	—	—	—
Annual	_	—	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)													—	
Total	—	—	—	—	—	—	—	—		—	—	—	—	—
Daily, Winter (Max)													_	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	—	—	_	—	—	—	_	_	_	—	_	_	_
Total	_	_	_	_	_	_	_	_		_	—	_	_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	—	—	_	—	_	—	—	_	_	_	_	_	—	—
Avoided	—	_	—	—	—	—	_	—	—	—	—	—	—	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Sequestere d	—	-	—	—	—	—	-	—	—	—	—	—	—	—
Subtotal	-	_	-	-	-	-	_	-	-	_	-	-	_	_
Removed	_	_	_	_	_	_	_	_	-	_	_	-	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_		_

Daily, Winter (Max)	—	—		_	_		—			_			_	_
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	_	—	—	—
Sequestere d	—	—	—	—	—	—	—			—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	_	—	—	—
Subtotal	—	—	—	—	—	—	—	—	_	—	_	—	—	—
—	—	—	—	—	—	—	—	—	_	—	_	—	—	—
Annual	—	—	—	—	—	—	—	—	_	—	_	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	_	—	—	_	—	—	—	—	—	—
Sequestere d	—	—			—	—	—			—	—		—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	_	—	_	_	_	_	—	_	_
Subtotal	—	—	—	—	—	—	—	_	—	_	_	—	_	_
	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Vegetation	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)		—			—	—	—		_	—	—	_	—	—
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)				_					_					
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Total	_	_	_	_	_	_	_	_			_	_	_	_

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	CO2T	CH4	N2O	CO2e
Daily, Summer (Max)	—	—	—	—			—	—		—	_	—	_	_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Daily, Winter (Max)		—	—				—	_		—	_		_	_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Annual	_	_	_	_	_	_	_	_	_	_		_	—	_
Total	_	_	—	_	—	—	_	—	_	—	—	_	—	_

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Species	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	СО2Т	CH4	N2O	CO2e
Daily, Summer (Max)								_		_			_	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Sequestere d	—	_				_	—		_		_	_	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—
_	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Daily, Winter (Max)	_							_					_	_
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Sequestere d	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Subtotal	_	_	_	_	_	_	_		_	_	_	_	_	_
Removed	_	—	_	_	_	—	_		_	_	_	_	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—
_	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestere d	—	—	—	—	—	—	—		_		_	—	—	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_		_	_	_	_	_	_
	_	_	_	_	_	_	_		_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	2/3/2025	2/17/2025	5.00	10.0	—
Site Preparation	Site Preparation	2/18/2025	2/19/2025	5.00	1.00	—
Grading	Grading	2/20/2025	2/22/2025	5.00	2.00	—
Building Construction	Building Construction	2/23/2025	7/13/2025	5.00	100	—
Paving	Paving	7/14/2025	7/21/2025	5.00	5.00	—
Architectural Coating	Architectural Coating	5/19/2025	7/25/2025	5.00	50.0	—

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Concrete/Industrial Saws	Diesel	Tier 2	1.00	8.00	33.0	0.73
Demolition	Rubber Tired Dozers	Diesel	Tier 2	1.00	1.00	367	0.40
Demolition	Tractors/Loaders/Backh oes	Diesel	Tier 2	2.00	6.00	84.0	0.37
Site Preparation	Graders	Diesel	Tier 2	1.00	8.00	148	0.41
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Tier 2	1.00	8.00	84.0	0.37
Grading	Graders	Diesel	Tier 2	1.00	6.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 2	1.00	6.00	367	0.40
Grading	Tractors/Loaders/Backh oes	Diesel	Tier 2	1.00	7.00	84.0	0.37
Building Construction	Cranes	Diesel	Tier 2	1.00	4.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 2	2.00	6.00	82.0	0.20

Building Construction	Tractors/Loaders/Backh oes	Diesel	Tier 2	2.00	8.00	84.0	0.37
Paving	Cement and Mortar Mixers	Diesel	Tier 2	4.00	6.00	10.0	0.56
Paving	Pavers	Diesel	Tier 2	1.00	7.00	81.0	0.42
Paving	Rollers	Diesel	Tier 2	1.00	7.00	36.0	0.38
Paving	Tractors/Loaders/Backh oes	Diesel	Tier 2	1.00	7.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Tier 2	1.00	6.00	37.0	0.48

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Concrete/Industrial Saws	Diesel	Tier 2	1.00	8.00	33.0	0.73
Demolition	Rubber Tired Dozers	Diesel	Tier 2	1.00	1.00	367	0.40
Demolition	Tractors/Loaders/Backh oes	Diesel	Tier 2	2.00	6.00	84.0	0.37
Site Preparation	Graders	Diesel	Tier 2	1.00	8.00	148	0.41
Site Preparation	Tractors/Loaders/Backh oes	Diesel	Tier 2	1.00	8.00	84.0	0.37
Grading	Graders	Diesel	Tier 2	1.00	6.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 2	1.00	6.00	367	0.40
Grading	Tractors/Loaders/Backh oes	Diesel	Tier 2	1.00	7.00	84.0	0.37
Building Construction	Cranes	Diesel	Tier 2	1.00	4.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 2	2.00	6.00	82.0	0.20
Building Construction	Tractors/Loaders/Backh oes	Diesel	Tier 2	2.00	8.00	84.0	0.37
Paving	Cement and Mortar Mixers	Diesel	Tier 2	4.00	6.00	10.0	0.56

Paving	Pavers	Diesel	Tier 2	1.00	7.00	81.0	0.42
Paving	Rollers	Diesel	Tier 2	1.00	7.00	36.0	0.38
Paving	Tractors/Loaders/Backh oes	Diesel	Tier 2	1.00	7.00	84.0	0.37
Architectural Coating	Air Compressors	Diesel	Tier 2	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	_	_	_	_
Demolition	Worker	10.0	12.0	LDA,LDT1,LDT2
Demolition	Vendor	_	7.63	HHDT,MHDT
Demolition	Hauling	5.60	20.0	HHDT
Demolition	Onsite truck	_	_	HHDT
Site Preparation	_	_	_	_
Site Preparation	Worker	5.00	12.0	LDA,LDT1,LDT2
Site Preparation	Vendor	_	7.63	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	7.50	12.0	LDA,LDT1,LDT2
Grading	Vendor	_	7.63	HHDT,MHDT
Grading	Hauling	45.0	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	—	_	_	_
Building Construction	Worker	2.16	12.0	LDA,LDT1,LDT2
Building Construction	Vendor	0.32	7.63	HHDT,MHDT

Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	17.5	12.0	LDA,LDT1,LDT2
Paving	Vendor	_	7.63	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	0.43	12.0	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	7.63	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	—	—	HHDT

5.3.2. Mitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	—	—	_	_
Demolition	Worker	10.0	12.0	LDA,LDT1,LDT2
Demolition	Vendor	_	7.63	HHDT,MHDT
Demolition	Hauling	5.60	20.0	HHDT
Demolition	Onsite truck	_	_	HHDT
Site Preparation	_	_	_	_
Site Preparation	Worker	5.00	12.0	LDA,LDT1,LDT2
Site Preparation	Vendor	_	7.63	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	—	—	—	—
Grading	Worker	7.50	12.0	LDA,LDT1,LDT2

Grading	Vendor		7.63	HHDT,MHDT
Grading	Hauling	45.0	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	—	_	_	_
Building Construction	Worker	2.16	12.0	LDA,LDT1,LDT2
Building Construction	Vendor	0.32	7.63	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	17.5	12.0	LDA,LDT1,LDT2
Paving	Vendor	_	7.63	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	—	—	—	—
Architectural Coating	Worker	0.43	12.0	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	7.63	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck			HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	10,364	3,455	0.00	0.00	—

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (Building Square Footage)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	4,800	—
Site Preparation	0.00	0.00	0.50	0.00	—
Grading	0.00	714	1.50	0.00	—
Paving	0.00	0.00	0.00	0.00	0.00

5.6.2. Construction Earthmoving Control Strategies

Non-applicable. No control strategies activated by user.

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Condo/Townhouse High Rise		0%
Parking Lot	0.00	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	589	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Meekday	Trips/Saturday	Trips/Supday	Trips/Vear		VMT/Saturday	VMT/Sunday	V/MT/Vear
Land Use Type	пря/меекцау	mps/Saturday	mps/Sunday	mps/ real	VIVIT/WEEKday	VINT/Saturday	Vivi1/Sullday	VIVIT/Teal

Condo/Townhouse High Rise	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.9.2. Mitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Condo/Townhouse High Rise	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

Hearth Type	Unmitigated (number)
Condo/Townhouse High Rise	
Wood Fireplaces	1
Gas Fireplaces	2
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	0
Conventional Wood Stoves	0
Catalytic Wood Stoves	0
Non-Catalytic Wood Stoves	0
Pellet Wood Stoves	0

Hearth Type	Unmitigated (number)
Condo/Townhouse High Rise	
Wood Fireplaces	1
Gas Fireplaces	2
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	0
Conventional Wood Stoves	0
Catalytic Wood Stoves	0
Non-Catalytic Wood Stoves	0
Pellet Wood Stoves	0

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
10363.949999999999	3,455	0.00	0.00	—

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.10.4. Landscape Equipment - Mitigated

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Condo/Townhouse High Rise	10,173	589	0.0330	0.0040	21,235
Parking Lot	0.00	589	0.0330	0.0040	0.00

5.11.2. Mitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Condo/Townhouse High Rise	10,173	589	0.0330	0.0040	21,235
Parking Lot	0.00	589	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Condo/Townhouse High Rise	105,399	56,366
Parking Lot	0.00	0.00

5.12.2. Mitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Condo/Townhouse High Rise	105,399	32,080
Parking Lot	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Condo/Townhouse High Rise	0.80	0.00
Parking Lot	0.00	0.00

5.13.2. Mitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Condo/Townhouse High Rise	0.80	0.00
Parking Lot	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Condo/Townhouse High Rise	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0
Condo/Townhouse High Rise	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1.00

5.14.2. Mitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Condo/Townhouse High Rise	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10.0

Condo/Townhouse High	Household refrigerators	R-134a	1,430	0.12	0.60	0.00	1.00
Rise	and/or freezers						

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor

5.15.2. Mitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower	Load Factor
--	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Туре
_	

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres

5.18.1.2. Mitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
5.18.1. Biomass Cover Type			

_ . _

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.1.2. Mitigated

Biomass Cover Type	Initial Acres		Final Acres	
5.18.2. Sequestration				
5.18.2.1. Unmitigated				
Тгее Туре	Number	Electricity Saved (kWh/year)	١	Natural Gas Saved (btu/year)
			ľ	

5.18.2.2. Mitigated

Tree Type Number Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
---	------------------------------

8. User Changes to Default Data

Screen Justification	Justification
----------------------	---------------

Land Use	Project would construct 3 condominiums in a 0.16 acre project site with a total of 5,118 building square footage
Construction: Construction Phases	Default construction schedule and duration. Only the architectural coating phase duration time was changed to overlap with building construction.
Construction: Off-Road Equipment	Default construction equipment with tier 2 engine
Operations: Vehicle Data	The proposed project would have zero trips since it is replacing the existing 3 condominium units